Ihre Suche

In authors or contributors

Ergebnisse 2 Einträge

  • Audio-visual binding – as subset of crossmodal integration – describes the combination of information across both these senses to the subjective unified perception of a bound object. We investigated audio-visual binding by using the ventriloquism-effect (localization of a sound is biased towards and by a simultaneous visual stimulus) to act as an indicator for perceived binding. Simple visual and auditory stimuli were presented synchronously or asynchronously. fMRI was recorded during task performance (n=19 subjects) in order to reveal activation in areas discussed to be involved in multisensory processing in the literature. Contrasting trials with reported ventriloquism-effect versus the no-binding condition revealed activation in the insula, superior temporal sulcus and parieto-occipital sulcus. Implementing the ventriloquism-effect allows us to relate these activations to consciousness-related processes, which probably are different from stimulus-driven multisensory integration in subcortical areas.

  • Executive working memory operations are related to prefrontal regions in the healthy brain. Moreover, neuroimaging data provide evidence for a functional dissociation of ventrolateral and dorsolateral prefrontal cortex. Most authors either suggest a modality-specific or a function-specific prefrontal cortex organization. In the present study we particularly aimed at the identification of different prefrontal cerebral areas that are involved in executive inhibitory processes during spatial working memory encoding. In an fMRI study (functional magnetic resonance imaging) we examined the neural correlates of spatial working memory processing by varying the amount of executive demands of the task. Twenty healthy volunteers performed the Corsi Block-Tapping test (CBT) during fMRI. The CBT requires the storage and reproduction of spatial target sequences. In a second condition, we presented an adapted version of the Block-Suppression-Test (BST). The BST is based on the original CBT but additionally requires the active suppression of visual distraction within the target sequences. In comparison to the CBT performance, particularly the left dorsolateral prefrontal cortex (BA 9) showed more activity during the BST condition. Our results show that the left dorsolateral prefrontal cortex plays a crucial role for executive controlled inhibition of spatial distraction. Furthermore, our findings are in line with the processing model of a functional dorsolateral-ventrolateral prefrontal cortex organization.

Last update from database: 04.06.25, 15:35 (UTC)