Ihre Suche

In authors or contributors

Ergebnisse 2 Einträge

  • Recent experiments have shown that somatic graviceptors exist in humans. Traditionally, extravestibular gravity information has been thought to originate from mechanoreceptors in the joints, muscles and skin. Experiments with normal, paraplegic and nephrectomized subjects revealed that the kidneys and the cardiovascular system are involved in providing truncal gravity information. The present study intends to determine the influence of shifts in body fluid, especially of the distribution of blood along the subjects' spinal (Z-) axis, on the perception of posture. To this end, the distribution of body fluids was altered by means of the technique of lower body negative and positive pressure (LBNP and LBPP). LBNP leads to venous pooling of blood in the legs, whereas LBPP prevents venous blood from pooling, increasing central volume. Changes in blood distribution were measured by segmental impedance cardiography for four body segments: the upper torso (thoracic cavity), lower torso (abdominal and pelvic region), thigh and calf. Seventeen healthy subjects (mean age: 27.3 years) participated in the experiment. They were positioned on the side (right-ear-down head position) on a tilt table which the subjects and the experimenter could tilt via remote control around an axis parallel to the subjects' visual (X-) axis. The experimenter set the initial tilt in total darkness to arbitrary angles while strictly alternating between head-up and head-down tilts. Subjects were then asked to rotate the board until they felt they were in a horizontal posture. Means and variances of eight pairs of settings were taken as a measure of the subjective horizontal posture (SHP). During LBNP (-30 mmHg), subjects perceived being tilted head-up, whereas LBPP (+30 mmHg) led them to feel tilted head-down. The results corroborate the hypothesis of an effect of the blood's mass on graviception and also indicate supplementary contributions of other visceral afferences.

  • The Necker-Zeno model of bistable perception provides a formal relation between the average duration of meta-stable percepts (dwell times T) of ambiguous figures and two other basic time scales (t(0), ΔT) underlying cognitive processing. The model predicts that dwell times T covary with t(0), ΔT or both. We tested this prediction by exploiting that observers, in particular experienced meditators, can volitionally control dwell times T. Meditators and non-meditators observed bistable Necker cubes either passively or tried to hold their current percept. The latencies of a centro-parietal event-related potential (CPP) were recorded as a physiological correlate of t(0). Dwell times T and the CPP latencies, correlated with t(0), differed between conditions and observer groups, while ΔT remained constant in the range predicted by the model. The covariation of CPP latencies and dwell times, as well as their quadratic functional dependence extends previous psychophysical confirmation of the Necker-Zeno model to psychophysiological measures.

Last update from database: 04.06.25, 15:35 (UTC)