Ihre Suche

In authors or contributors
Sprache

Ergebnisse 40 Einträge

  • The observation of an ambiguous figure leads to spontaneous perceptual reversals while the observed picture stays unchanged. Some ERP studies on ambiguous figures report a P300-like component correlated with perceptual reversals supporting a top-down explanation, while other studies found early visual ERP components supporting a bottom-up explanation. Based on an experimental paradigm that permits a high temporal resolution of the endogenous reversal event, we compared endogenous Necker-cube reversals with exogenously-induced reversals of unambiguous cube variants. For both reversal types, we found a chain of ERP components with the following characteristics: (1) An early occipital ERP component (130 ms) is restricted to endogenous reversals. (2) All subsequent components also appear with exogenously-induced reversals, however 40-90 ms earlier than their endogenous counterparts. (3) The latency difference between reversal types is also reflected in the timing of manual reactions, which occur 100-130 ms after P300-like components. The results suggest that the P300-like component is the same as found in other ERP studies on ambiguous figures. This component does not reflect the reversal per se, but rather its cognitive analysis, 300 ms after a change of the representation in early visual areas. The presented ERP chains integrate the different ERP results and allow to pinpoint the steps where top-down mechanisms begin to exert their influence.

  • How can our percept spontaneously change while the observed object stays unchanged? This happens with ambiguous figures, like the Necker cube. Explanations favor either bottom-up factors in early visual processing, or top-down factors near awareness. The EEG has a high temporal resolution, so event related potentials (ERPs) may help to throw light on these alternative explanations. However, the precise point in time of neural correlates of perceptual reversal is difficult to estimate. We developed a paradigm that overcomes this problem and found an early (120 ms) occipital ERP signal correlated with endogenous perceptual reversal. Parallels of ambiguous-figure-reversal to binocular-rivalry-reversals are explored.

  • Although our eyes receive incomplete and ambiguous information, our perceptual system is usually able to successfully construct a stable representation of the world. In the case of ambiguous figures, however, perception is unstable, spontaneously alternating between equally possible outcomes. The present study compared EEG responses to ambiguous figures and their unambiguous variants. We found that slight figural changes, which turn ambiguous figures into unambiguous ones, lead to a dramatic difference in an ERP ("event-related potential") component at around 400 ms. This result was obtained across two different categories of figures, namely the geometric Necker cube stimulus and the semantic Old/Young Woman face stimulus. Our results fit well into the Bayesian inference concept, which models the evaluation of a perceptual interpretation's reliability for subsequent action planning. This process seems to be unconscious and the late EEG signature may be a correlate of the outcome.

  • Normally we experience the visual world as stable. Ambiguous figures provide a fascinating exception: On prolonged inspection, the "Necker cube" undergoes a sudden, unavoidable reversal of its perceived front-back orientation. What happens in the brain when spontaneously switching between these equally likely interpretations? Does neural processing differ between an endogenously perceived reversal of a physically unchanged ambiguous stimulus and an exogenously caused reversal of an unambiguous stimulus? A refined EEG paradigm to measure such endogenous events uncovered an early electrophysiological correlate of this spontaneous reversal, a negativity beginning at 160 ms. Comparing across nine electrode locations suggests that this component originates in early visual areas. An EEG component of similar shape and scalp distribution, but 50 ms earlier, was evoked by an external reversal of unambiguous figures. Perceptual disambiguation seems to be accomplished by the same structures that represent objects per se, and to occur early in the visual stream. This suggests that low-level mechanisms play a crucial role in resolving perceptual ambiguity.

  • Ambiguous figures attract observers because perception alternates between different interpretations while the sensory information stays unchanged. Understanding the underlying processes is difficult because the precise time instant of this endogenous reversal event needs to be known but is difficult to measure. Presenting ambiguous figures discontinuously and using stimulus onset as estimation of the reversal event increased temporal resolution and provided a series of well-confirmed EEG signatures. In the current EEG study we used this 'onset paradigm' for the first time with Boring's old/young woman stimulus. We found an early occipital event-related potential (ERP) correlate of reversals between the perception of the old woman and the perception of the young woman that fits well with previous ERP findings. This component was not followed by the often-reported occipito-parietal Reversal Negativity at 260 ms, but instead by an occipito-temporal N170, that is typically reported with face stimuli. We interpret our results as follows: ambiguity conflicts take place during processing of stimulus elements in early visual areas roughly 130 ms after stimulus onset. The disambiguation of these elements and their assembly to object 'gestalts' result from an interplay between early visual and object-specific brain areas in a temporal window between 130 and 260 ms after stimulus onset. In the particular case of Boring's old/young woman the processes of element disambiguation and gestalt construction are already finished at 170 ms and, thus, 90 ms earlier than in the case of ambiguous geometric figures (eg Necker cube or Schroeder staircase) or of binocular rivalrous gratings.

  • Repeated learning improves memory. Temporally distributed ("spaced") learning can be twice as efficient than massed learning. Importantly, learning success is a non-monotonic maximum function of the spacing interval between learning units. Further optimal spacing intervals seem to exist at different time scales from seconds to days. We briefly review the current state of knowledge about this "spacing effect" and then discuss very similar but so far little noticed spacing patterns during a form of synaptic plasticity at the cellular level, called long term potentiation (LTP). The optimization of learning is highly relevant for all of us. It may be realized easily with appropriate spacing. In our view, the generality of the spacing effect points to basic mechanisms worth for coordinated research on the different levels of complexity.

  • During observation of an ambiguous Necker cube, our percept changes spontaneously although the external stimulus does not. An EEG paradigm allowing time-resolved EEG measurement during endogenous perceptual reversals recently revealed a chain of ERP correlates beginning with an early occipital positivity at around 130 ms (Reversal Positivity, "RP"). In order to better understand the functional role of this RP, we investigated its relation to the P100, which is spatiotemporally close, typically occurring 100 ms after onset of a visual stimulus at occipital electrodes. We compared the relation of the ERP amplitudes to varying sizes of ambiguous Necker cubes. The main results are: (1) The P100 amplitude increases monotonically with stimulus size but is independent of the participants' percept. (2) The RP, in contrast, is percept-related and largely unaffected by stimulus size. (3) A similar pattern to RP was found for reaction times: They depend on the percept but not on stimulus size. We speculate that the P100 reflects processing of elementary visual features, while the RP is related to a processing conflict during 3D interpretation that precedes a reversal. The present results indicate that low-level visual processing (related to stimulus size) and (relative) high-level processing (related to perceptual reversal) occur in close spatial and temporal vicinity.

  • Environmental information available to our senses is incomplete and to varying degrees ambiguous. It has to be disambiguated in order to construct stable and reliable percepts. Ambiguous figures are artificial examples where perception is maximally unstable and alternates between possible interpretations. Tiny low-level changes can disambiguate an ambiguous figure and thus stabilize percepts. The present study compares ERPs evoked by ambiguous stimuli and disambiguated stimulus variants across three visual categories: geometry (Necker cube), motion (stroboscopic alternative motion stimulus, SAM) and semantics (Boring's old/young woman). We found that (a) disambiguated stimulus variants cause stable percepts and evoke two huge positive ERP excursions (Cohen's effect sizes 1-2), (b) the amplitudes of these ERP effects are inversely related to the degree of stimulus ambiguity, and (c) this pattern of results is consistent across all three tested visual categories. This generality across visual categories points to mechanisms at a very abstract (cognitive) level of processing. We discuss our results in the context of a high-level Bayesian inference unit that evaluates the reliability of perceptual processing results, given a priori incomplete, ambiguous sensory information. The ERP components may reflect the outcome of this reliability estimation.

  • Ambiguous figures induce sudden transitions between rivaling percepts. We investigated electroencephalogram frequency modulations of accompanying change-related de- and rebinding processes. Presenting the stimuli discontinously, we synchronized perceptual reversals with stimulus onset, which served as a time reference for averaging. The resultant gain in temporal resolution revealed a sequence of time-frequency correlates of the reversal process. Most conspicuous was a transient right-hemispheric gamma modulation preceding endogenous reversals by at least 200 ms. No such modulation occurred with exogenously induced reversals of unambiguous stimulus variants. Post-onset components were delayed for ambiguous compared to unambiguous stimuli. The time course of oscillatory activity differed in several respects from predictions based on binding-related hypotheses. The gamma modulation preceding endogenous reversals may indicate an unstable brain state, ready to switch.

  • Effortless learning during sleep is everybody's dream. Several studies found that presenting odor cues during learning and selectively during slow wave sleep increases learning success. The current study extends previous research in three aspects to test for optimization and practical applicability of this cueing effect: We (1) performed a field study of vocabulary-learning in a regular school setting, (2) stimulated with odor cues during the whole night without sleep monitoring, and (3) applied the odor additionally as retrieval cue in a subsequent test. We found an odor cueing effect with comparable effect sizes (d between 0.6 and 1.2) as studies with sleep monitoring and selective cueing. Further, we observed some (non-significant) indication for a further performance benefit with additional cueing during the recall test. Our results replicate previous findings and provide important extensions: First, the odor effect also works outside the lab. Second, continuous cueing at night produces similar effect sizes as a study with selective cueing in specific sleep stages. Whether odor cueing during memory recall further increases memory performance hast to be shown in future studies. Overall, our results extend the knowledge on odor cueing effects and provide a realistic practical perspective on it.

  • Current theories about visual perception assume that our perceptual system weights the a priori incomplete, noisy and ambiguous sensory information with previous, memorized perceptual experiences in order to construct stable and reliable percepts. These theories are supported by numerous experimental findings. Theories about precognition have an opposite point of view. They assume that information from the future can have influence on perception, thoughts, and behavior. Several experimental studies provide evidence for precognition effects, other studies found no such effects. One problem may be that the vast majority of precognition paradigms did not systematically control for potential effects from the perceptual history. In the present study, we presented ambiguous Necker cube stimuli and disambiguated cube variants and systematically tested in two separate experiments whether perception of a currently observed ambiguous Necker cube stimulus can be influenced by a disambiguated cube variant, presented in the immediate perceptual past (perceptual history effects) and/or in the immediate perceptual future (precognition effects). We found perceptual history effects, which partly depended on the length of the perceptual history trace but were independent of the perceptual future. Results from some individual participants suggest on the first glance a precognition pattern, but results from our second experiment make a perceptual history explanation more probable. On the group level, no precognition effects were statistically indicated. The perceptual history effects found in the present study are in confirmation with related studies from the literature. The precognition analysis revealed some interesting individual patterns, which however did not allow for general conclusions. Overall, the present study demonstrates that any future experiment about sensory or extrasensory perception urgently needs to control for potential perceptual history effects and that temporal aspects of stimulus presentation are of high relevance.

  • During prolonged observation of an ambiguous figure sudden perceptual reversals occur, while the stimulus itself stays unchanged. There is a vivid debate about whether bottom-up or top-down mechanisms underlie this phenomenon. In the present study, we investigated the interrelation of two experimental factors: volitional control and discontinuous stimulus presentation. Both factors strongly modulate the rate of perceptual reversals and each is attributed either as top-down or bottom-up. We found that participants can apply specific strategies to volitionally increase and/or decrease the stability duration of each of the possible percepts according to the experimental instructions. When attempts of volitional control are combined with discontinuous stimulus presentation the effects are fully additive. Our results indicate that perceptual reversals can originate from different neural mechanisms on different time scales.

  • Temporally distributed ("spaced") learning can be twice as efficient as massed learning. This "spacing effect" occurs with a broad spectrum of learning materials, with humans of different ages, with non-human vertebrates and also invertebrates. This indicates, that very basic learning mechanisms are at work ("generality"). Although most studies so far focused on very narrow spacing interval ranges, there is some evidence for a non-monotonic behavior of this "spacing effect" ("nonlinearity") with optimal spacing intervals at different time scales. In the current study we focused both the nonlinearity aspect by using a broad range of spacing intervals and the generality aspect by using very different learning/practice domains: Participants learned German-Japanese word pairs and performed visual acuity tests. For each of six groups we used a different spacing interval between learning/practice units from 7 min to 24 h in logarithmic steps. Memory retention was studied in three consecutive final tests, one, seven and 28 days after the final learning unit. For both the vocabulary learning and visual acuity performance we found a highly significant effect of the factor spacing interval on the final test performance. In the 12 h-spacing-group about 85% of the learned words stayed in memory and nearly all of the visual acuity gain was preserved. In the 24 h-spacing-group, in contrast, only about 33% of the learned words were retained and the visual acuity gain dropped to zero. The very similar patterns of results from the two very different learning/practice domains point to similar underlying mechanisms. Further, our results indicate spacing in the range of 12 hours as optimal. A second peak may be around a spacing interval of 20 min but here the data are less clear. We discuss relations between our results and basic learning at the neuronal level.

  • Spaced learning produces better learning performance than extended learning periods without or with little interruptions. This "spacing effect" exists on different time scales, ranging from seconds to months. We recently found large spacing effects with a hitherto rarely investigated 12-hours spacing interval. The present study tested for potentially larger learning effects in the temporal vicinity of 12 h and analyzed spacing effects separately for learning and forgetting. 102 participants learned 40 German-Japanese vocabulary pairs in separate conditions with 7.5 min and 4-, 8-, 12-, and 24-hours spacing intervals. Two final tests were executed after retention intervals of 24 h and 7 days. The 7.5-min spacing interval produced a steeper initial learning curve than all other spacing intervals. 24 h after the last learning unit, we found almost no forgetting in the 4-, 8- and 12-hours spacing conditions, but about 9.3% and 3.6% forgetting in the 7.5 min and 24 h spacing conditions. After 7 days, forgetting was in the range of 13% for all conditions between 4 and 24 h. The 7.5 min condition produced 34% forgetting. Our results indicate that spacing intervals in the range of 8 h ± 4 h provide high learning performance and can be easily integrated in our daily schedules.

  • PURPOSE: We sought brain activity that predicts visual consciousness. METHODS: We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. RESULTS: We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. CONCLUSION: We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness.

  • Magneto- and electroencephalography (M/EEG) are widespread techniques to measure neural activity in-vivo at a high temporal resolution but low spatial resolution. Locating the neural sources underlying the M/EEG poses an inverse problem, which is ill-posed. We developed a new method based on Recursive Application of Multiple Signal Classification (MUSIC). Our proposed method is able to recover not only the locations but, in contrast to other inverse solutions, also the extent of active brain regions flexibly (FLEX-MUSIC). This is achieved by allowing it to search not only for single dipoles but also dipole clusters of increasing extent to find the best fit during each recursion. FLEX-MUSIC achieved the highest accuracy for both single dipole and extended sources compared to all other methods tested. Remarkably, FLEX-MUSIC was capable to accurately estimate the level of sparsity in the source space (r = 0.82), whereas all other approaches tested failed to do so (r ≤ 0.18). The average computation time of FLEX-MUSIC was considerably lower compared to a popular Bayesian approach and comparable to that of another recursive MUSIC approach and eLORETA. FLEX-MUSIC produces only few errors and was capable to reliably estimate the extent of sources. The accuracy and low computation time of FLEX-MUSIC renders it an improved technique to solve M/EEG inverse problems both in neuroscience research and potentially in pre-surgery diagnostic in epilepsy.

  • If we observe an ambiguous figure, our percept is unstable and alternates between the possible interpretations. Periodically interrupting the presentation sizably modulates the spontaneous reversal rate. We here studied event-related potential (ERP) correlates of the neural processes underlying these strong modulations. An ambiguous Necker stimulus was presented discontinuously with four randomly varying interstimulus intervals (ISI; 14, 43, 130, 390 ms) while participants indicated perceptual reversals. EEG was selectively averaged with respect to the participants' percept and ISI. ERP traces varied markedly between ISIs. A simple model explained a major part of this variation and showed that the ISI-dependent ERP modulation occurs after disambiguation has already taken place. We suggest that perceptual stability (or reversal) depends on a system state, slowly changing from one reversal to the next. ISI can shift this state on a scale between stability and instability.

  • During visual imagination, a perceptual representation is activated in the absence of sensory input. This is sometimes described as seeing with the mind's eye. A number of physiological studies indicate that the brain uses more or less the same neural resources for visual perception of sensory information and visual imagination. The intensity of visual imagination is typically assessed with questionnaires, while more objective measures are missing. Aim of the present study was, to test a new experimental paradigm that may allow to objectively quantify imagination. For this, we used priming and adaptation effects during observation of ambiguous figures. Our perception of an ambiguous stimulus is unstable and alternates spontaneously between two possible interpretations. If we first observe an unambiguous stimulus variant (the conditioning stimulus), the subsequently presented ambiguous stimulus can either be perceived in the same way as the test stimulus (priming effect) or in the opposite way (adaptation effect) as a function of the conditioning time. We tested for these conditioning effects (priming and adaptation) using an ambiguous Necker Cube and an ambiguous Letter /Number stimulus as test stimuli and unambiguous variants thereof as conditioning stimuli. In a second experimental condition, we tested whether the previous imagination of an unambiguous conditioning stimulus variant - instead of its observation - can have similar conditioning effects on the subsequent test stimulus. We found no systematic conditioning effect on the group level, neither for the two stimulus types (Necker Cube stimuli and Letter /Number stimuli) nor for the two conditions (Real and Imaginary). However, significant correlations between effects of Real and Imaginary Condition were observed for both stimulus types. The absence of conditioning effects at the group level may be explained by using only one conditioning time, which may fit with individual priming and adaptation constants of some of our participants but not of others. Our strong correlation results indicate that observers with clear conditioning effects have about the same type (priming or adaptation) and intensity of imaginary conditioning effects. As a consequence, not only past perceptual experiences but also past imaginations can influence our current percepts. This is further confirmation that the mechanisms underlying perception and imagination are similar. Our post-hoc qualitative observations from three self-defined aphantasic observers indicate that our paradigm may be a promising objective measure to identify aphantasia.

  • BACKGROUND: During observation of the Necker cube perception becomes unstable and alternates repeatedly between a from-above-perspective ("fap") and a from-below-perspective ("fbp") interpretation. Both interpretations are physically equally plausible, however, observers usually show an a priori top-down bias in favor of the fap interpretation. Patients with Autism spectrum disorder are known to show an altered pattern of perception with a focus on sensory details. In the present study we tested whether this altered perceptual processing affects their reversal dynamics and reduces the perceptual bias during Necker cube observation. METHODS: 19 participants with Asperger syndrome and 16 healthy controls observed a Necker cube stimulus continuously for 5 minutes and indicated perceptual reversals by key press. We compared reversal rates (number of reversals per minute) and the distributions of dwell times for the two interpretations between observer groups. RESULTS: Asperger participants showed less perceptual reversal than controls. Six Asperger participants did not perceive any reversal at all, whereas all observers from the control group perceived at least five reversals within the five minutes observation time. Further, control participants showed the typical perceptual bias with significant longer median dwell times for the fap compared to the fbp interpretation. No such perceptual bias was found in the Asperger group. DISCUSSION: The perceptual system weights the incomplete and ambiguous sensory input with memorized concepts in order to construct stable and reliable percepts. In the case of the Necker cube stimulus, two perceptual interpretations are equally compatible with the sensory information and internal fluctuations may cause perceptual alternations between them-with a slightly larger probability value for the fap interpretation (perceptual bias). Smaller reversal rates in Asperger observers may result from the dominance of bottom-up sensory input over endogenous top-down factors. The latter may also explain the absence of a fap bias.

  • One of the great challenges in psychiatry is finding reliable biomarkers that may allow for more accurate diagnosis and treatment of patients. Neural variability received increasing attention in recent years as a potential biomarker. In the present explorative study we investigated temporal variability in visually evoked EEG activity in a cohort of 16 adult participants with Asperger Syndrome (AS) and 19 neurotypical (NT) controls. Participants performed a visual oddball task using fine and coarse checkerboard stimuli. We investigated various measures of neural variability and found effects on multiple time scales. (1) As opposed to the previous studies, we found reduced inter-trial variability in the AS group compared to NT. (2) This effect builds up over the entire course of a 5-min experiment and (3) seems to be based on smaller variability of neural background activity in AS compared to NTs. The here reported variability effects come with considerably large effect sizes, making them promising candidates for potentially reliable biomarkers in psychiatric diagnostics. The observed pattern of universality across different time scales and stimulation conditions indicates trait-like effects. Further research with a new and larger set of participants are thus needed to verify or falsify our findings.

Last update from database: 11.08.25, 05:41 (UTC)

Erkunden

Team

Eintragsart

Sprache

Thema