Ihre Suche

In authors or contributors
Thema

Ergebnisse 24 Einträge

  • The question to what extent emotion-related brain activation depends upon the presentation design (block design vs. event-related design) and the stimulus type (scene pictures vs. pictures with facial mimic) has hardly been addressed in previous functional magnetic resonance imaging (fMRI) research. In the present fMRI experiment, 40 right-handed subjects viewed pictures with fear-inducing and disgust-inducing content as well as facial expressions of fear and disgust. Pictures of neutral objects and neutral facial mimic were used as control stimuli. The pictures were presented in a block design for half of the subjects; the other half viewed the same stimuli as singular events in randomized sequence. The participants had been instructed to passively view the pictures. Disgust-evoking scenes provoked activation in the amygdala, the insula and the orbitofrontal cortex (OFC). This applied to the blocked as well as to the event-related design. Fear-relevant scenes were associated with activity in the insula, the OFC and the middle temporal gyri in the event-related design. The presentation in a block design only led to activation in the middle temporal gyri. Facial expressions of disgust and fear did not trigger significant activation neither in the blocked nor event-related design. This surprising outcome may be a result of context and task effects. The face stimuli which were presented together with the more complex scenes in a passive viewing paradigm possibly were not salient enough to trigger emotional processing.

  • Functional magnetic resonance imaging studies have examined neural correlates of disgust imagery, but have never taken into account the moderating effects of personality traits. Twenty-four women first viewed and subsequently visualized pictures with disgust-inducing and happiness-inducing content. Relative to the picture perception, disgust, and happiness imagery provoked activation of the insula, anterior cingulate cortex, and parietal cortex. Trait disgust was negatively correlated with localized brain activation (e.g. insula, amygdala, parietal cortex, anterior cingulate cortex) during disgust imagery. This study provides first evidence that disgust propensity is associated with brain activation during imagery of repulsive scenes.

  • This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation.

  • This functional magnetic resonance imaging study investigated long-term effects of cognitive behavior therapy (CBT) in individuals suffering from spider phobia. Ten female patients who had shown positive immediate CBT effects were invited to take part in a 6-month follow-up investigation. Here, the patients, along with eight non-phobic females, were presented with the same pictures depicting spiders, generally disgust-inducing, generally fear-inducing and neutral content, which they had viewed 6 months earlier. Patients' self-report and overt behavior indicated a positive long-term clinical improvement. Related hemodynamic changes included an increase in medial orbitofrontal cortex (OFC) activity. As the medial OFC is involved in emotion-related learning, especially in the representation of positive stimulus-outcome associations, we conclude that the medial OFC effect constitutes the neuronal basis of the lasting positive CBT outcome. Activity to disorder-irrelevant pictures decreased across the sessions in the lateral OFC and in the insula, which most likely reflects general habituation.

  • BACKGROUND: The underlying neurobiological mechanisms that account for the onset and maintenance of binge-eating disorder (BED) are not sufficiently understood. This functional magnetic resonance imaging (fMRI) study explored the neural correlates of visually induced food reward and loathing. METHOD: Sixty-seven female participants assigned to one of four groups (overweight BED patients, overweight healthy control subjects, normal-weight healthy control subjects, and normal-weight patients with bulimia nervosa) participated in the experiment. After an overnight fast, the participants' brain activation was recorded during each of the following three conditions: visual exposure to high-caloric food, to disgust-inducing pictures, and to affectively neutral pictures. After the fMRI experiment, the participants rated the affective value of the pictures. RESULTS: Each of the groups experienced the food pictures as very pleasant. Relative to the neutral pictures, the visual food stimuli provoked increased activation in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and insula across all participants. The BED patients reported enhanced reward sensitivity and showed stronger medial OFC responses while viewing food pictures than all other groups. The bulimic patients displayed greater arousal, ACC activation, and insula activation than the other groups. Neural responses to the disgust-inducing pictures as well as trait disgust did not differ between the groups. CONCLUSIONS: This study provides first evidence of differential brain activation to visual food stimuli in patients suffering from BED and bulimia nervosa.

  • We examined whether males and females differ in the intensity and laterality of their hemodynamic responses towards visual disgust and fear stimuli. Forty-one female, and 51 male subjects viewed disgust-inducing, fear-inducing and neutral pictures in an fMRI block design. Self-report data indicated that the target emotions had been elicited successfully with women responding stronger than men. While viewing the fear pictures, which depicted attacks by humans or animals, men exhibited greater activation in the bilateral amygdala and the left fusiform gyrus than women. This response pattern may reflect greater attention from males to cues of aggression in their environment. Further, the lateralization of brain activation was comparable in the two genders during both aversive picture conditions.

  • We examined the influence of disgust sensitivity and trait anxiety on disgust processing via functional magnetic resonance imaging. Data of 63 healthy females were combined across four studies, where the same disgusting and affectively neutral pictures had been presented. The disgust pictures, rated as highly repulsive, provoked activation in the occipital cortex, the left prefrontal cortex and both amygdalae. Disgust sensitivity and trait anxiety were positively, and independently from each other, correlated with the activation of the right amygdala. This points to the role of the amygdala as an integrative brain structure, whose activation can be modulated by different affective styles.

  • This functional magnetic resonance imaging study investigated the disgust- and fear-reactivity of patients suffering from obsessive-compulsive disorder (OCD). Ten OCD patients were scanned while viewing blocks of pictures showing OCD triggers from their personal environment and OCD-irrelevant disgust-inducing, fear-inducing and neutral scenes. Afterwards, the patients rated the intensity of the induced disgust, fear and OCD symptoms. The responses were compared with those of 10 healthy control subjects. The disorder-relevant pictures provoked intense OCD symptoms in the clinical group associated with increased activation in the bilateral prefrontal cortex, the left insula, the right supramarginal gyrus, the left caudate nucleus and the right thalamus. The patients gave higher disgust and fear ratings than the controls for all aversive picture categories. Neural responses towards the disorder-irrelevant disgusting and fear-inducing material included more pronounced insula activation in patients than controls. Summarizing, photos of individual OCD-triggers are an effective means of symptom provocation and activation of the fronto-striato-thalamo-parietal network. The increased insular reactivity of OCD patients during all aversive picture conditions might mirror their susceptibility to experience negative somatic states.

  • The present functional magnetic resonance imaging study investigated the fear and disgust reactivity of patients suffering from spider phobia. Ten phobics and 13 control subjects were scanned while viewing alternating blocks of phobia-relevant, generally fear-inducing, disgust-inducing and affectively neutral pictures. The patient group rated the spider pictures as being more disgust and fear evoking than the control group, and showed greater activation of the visual association cortex, the amygdalae, the right dorsolateral prefrontal cortex and the right hippocampus. Specific phobia-related activation occurred in the supplementary motor area. The patients also showed greater amygdala activation during the presentation of generally disgust- and fear-inducing pictures. This points to an elevated sensitivity to repulsive and threatening stimuli in spider phobics and implicates the amygdala as a crucial neural substrate.

  • Neurofunctional mechanisms underlying cognitive behavior therapy (CBT) are still not clearly understood. This functional magnetic resonance imaging (fMRI) study focused on changes in brain activation as a result of one-session CBT in patients suffering from spider phobia. Twenty-six female spider phobics and 25 non-phobic subjects were presented with spider pictures, generally disgust-inducing, generally fear-inducing and affectively neutral scenes in an initial fMRI session. Afterwards, the patients were randomly assigned to either a therapy group (TG) or a waiting list group (WG). The scans were repeated one week after the treatment or after a one-week waiting period. Relative to the non-phobic participants, the patients displayed increased activation in the amygdala and the fusiform gyrus as well as decreased activation in the medial orbitofrontal cortex (OFC) during the first exposure. The therapy effect consisted of increased medial OFC activity in the TG relative to the WG. Further, therapy-related reductions in experienced somatic anxiety symptoms were positively correlated with activation decreases in the amygdala and the insula. We conclude that successful treatment of spider phobia is primarily accompanied by functional changes of the medial OFC. This brain region is crucial for the self-regulation of emotions and the relearning of stimulus-reinforcement associations.

  • The cerebellum and the hippocampus are key structures for the acquisition of conditioned eyeblink responses. Whereas the cerebellum seems to be crucial for all types of eyeblink conditioning, the hippocampus appears to be involved only in complex types of learning. We conducted a differential conditioning study to explore the suitability of the design for magnetencephalography (MEG). In addition, we compared cerebellar and hippocampal activation during differential delay and trace conditioning. Comparable conditioning effects were seen in both conditions, but a greater resistance to extinction for trace conditioning. Brain activation differed between paradigms: delay conditioning provoked activation only in the cerebellum and trace conditioning only in the hippocampus. The results reflect differential brain activation patterns during the two types of eyeblink conditioning.

  • Findings from several functional magnetic resonance imaging (fMRI) studies implicate the existence of a distinct neural disgust substrate, whereas others support the idea of distributed and integrative brain systems involved in emotional processing. In the present fMRI experiment 12 healthy females viewed pictures from four emotion categories. Two categories were disgust-relevant and depicted contamination or mutilation. The other scenes showed attacks (fear) or were affectively neutral. The two types of disgust elicitors received comparable ratings for disgust, fear and arousal. Both were associated with activation of the occipitotemporal cortex, the amygdala, and the orbitofrontal cortex; insula activity was nonsignificant in the two disgust conditions. Mutilation scenes induced greater inferior parietal activity than contamination scenes, which might mirror their greater capacity to capture attention. Our results are in disagreement with the idea of selective disgust processing at the insula. They point to a network of brain regions involved in the decoding of stimulus salience and the regulation of attention.

  • The major goal of the present functional magnetic resonance imaging study was to investigate the influence of disgust sensitivity on hemodynamic responses during disgust induction. Fifteen subjects viewed three different film excerpts (duration: 135 s each) with disgust-evoking, threatening and neutral content. The films were presented in a block design with four repetitions of each condition. Afterwards, subjects gave affective ratings for the films and answered the questionnaire for the assessment of disgust sensitivity (QADS, []). The subjects' overall disgust sensitivity was positively related to their experienced disgust, as well as to their prefrontal cortex activation during the disgust condition. Further, there was a positive correlation between subjects' scores on the QADS subscale spoilage/decay and their amygdala activation (r=0.76). This was reasonable since the disgust film clip depicted a cockroach-invasion and the subscale spoilage/decay contains, among others, an item asking for disgust towards cockroaches. The study stresses, in accordance to previous studies, the importance of considering personality traits when studying affective responses in fMRI studies.

  • We examined the effects of symptom induction on neural activation in blood-injection-injury (BII) phobia. Nine phobic and 10 non-phobic subjects participated in an fMRI study in which they were presented with disorder-relevant, generally disgust-inducing, generally fear-evoking and neutral pictures. We observed diminished medial prefrontal cortex (MPFC) activity in patients compared to controls for phobia-relevant and disgust-inducing pictures. The MPFC has been shown to be critically involved in the automatic and effortful cognitive regulation of emotions. Therefore, the results might reflect reduced cognitive control of emotions in BII phobics during the experience of phobic symptoms as well as during states of disgust. The latter response component might be a result of the elevated disgust sensitivity of BII phobics.

  • Inconsistent findings from several functional magnetic resonance imaging (fMRI) studies on fear and disgust raise the question which brain regions are relatively specialized and which are general in the processing of these basic emotions. Some of these inconsistencies could partially be due to inter-individual differences in the experience of the applied emotional stimuli. In the present study, we therefore correlated the participants' individual online reports of fear and disgust with their hemodynamic responses towards each of the fear- and disgust-inducing scenes. Sixty six participants (32 females) took part in the fMRI study. In an event-related design, they saw 50 pictures with different emotional impact (10 neutral, 20 disgust-inducing, 20 fear-inducing). Pictures were presented for 4 s and participants rated each picture online - just after the presentation - on the dimensions disgust and fear among others. The results indicate that the processing of disgust- and fear-inducing pictures involves similar as well as distinct brain regions. Both emotional stimulus categories resulted in activations in the extended occipital cortex, in the prefrontal cortex, and in the amygdala. However, insula activations were only significantly correlated with subjective ratings of disgust, pointing to a specific role of this brain structure in the processing of disgust.

  • INTRODUCTION: Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. AIM: Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. METHODS: The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. MAIN OUTCOME MEASURES: Blood oxygen level-dependent responses measured by fMRI and subjective ratings. RESULTS: A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. CONCLUSION: Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males.

  • The majority of neuroimaging studies on affective processing have indicated that there are specific brain structures, which are selectively responsive to fear and disgust. Whereas the amygdala is assumed to be fear-related, the insular cortex is most likely involved in disgust processing. Since these findings are mainly a result of studies focusing exclusively either on fear, or on disgust, but rarely on both emotions together, the present experiment explored the neural effects of viewing disgusting and fear-inducing pictures in contrast to neutral pictures. This was done by means of functional magnetic resonance imaging (fMRI) with 19 subjects (nine males, ten females), who also gave affective ratings for the presented pictures. The fear and the disgust pictures were able to induce the target emotions and they received comparable valence and arousal ratings. The processing of both aversive picture types was associated with an increased brain activation in the occipital-temporal lobe, in the prefrontal cortex, and in the thalamus. The amygdala was significantly activated by disgusting, but not by fear-inducing, pictures. Thus, our data are in contrast with the idea of highly emotion-specific brain structures and rather suggest the existence of a common affective circuit.

  • The stress hormone cortisol is known to influence declarative memory and associative learning. In animals, stress has often been reported to have opposing effects on memory and learning in males and females. In humans, the effects of cortisol have mainly been studied at the behavioral level. The aim of the present experiment was to characterize the effects of a single cortisol dose (30 mg) on the hemodynamic correlates of fear conditioning. In a double-blind group comparison study subjects (17 females and 17 males) received 30 mg cortisol or placebo orally before participating in a discriminative fear conditioning paradigm. Results revealed that cortisol impaired electrodermal signs of learning (the first interval response) in males, while no conditioned SCRs emerged for the females independent of treatment. fMRI results showed that cortisol reduced activity for the CS+ > CS- comparison in the anterior cingulate, the lateral orbitofrontal cortex and the medial prefrontal cortex in males. Opposite findings (increase in these regions under cortisol) were detected in females. In addition, cortisol reduced the habituation in the CS+ > CS- contrast in the dorsolateral prefrontal cortex independent of sex. Finally, cortisol also modified the response to the electric shock (the UCS) by enhancing the activity of the anterior as well as the posterior cingulate. In sum, these findings demonstrate that in humans cortisol mostly influences prefrontal brain activation during fear conditioning and that these effects appear to be modulated by sex.

  • Patients suffering from obsessive-compulsive disorder (OCD) are characterized by dysregulated neuronal processing of disorder-specific and also unspecific affective stimuli. In the present study, we investigated whether generic fear-inducing, disgust-inducing, and neutral stimuli can be decoded from brain patterns of single fMRI time samples of individual OCD patients and healthy controls. Furthermore, we tested whether differences in the underlying encoding provide information to classify subjects into groups (OCD patients or healthy controls). Two pattern classification analyses were conducted. In analysis 1, we used a classifier to decode the category of a currently viewed picture from extended fMRI patterns of single time samples (TR=3s) in individual subjects for several pairs of categories. In analysis 2, we used a searchlight approach to predict subjects' diagnostic status based on local brain patterns. In analysis 1, we obtained significant accuracies for the separation of fear-eliciting from neutral pictures in OCD patients and healthy controls. Separation of disgust-inducing from neutral pictures was significant in healthy controls. In analysis 2, we identified diagnostic information for the presence of OCD in the orbitofrontal cortex, and in the caudate nucleus. Accuracy obtained in these regions was 100% (p<10(-6)). To summarize our findings, by using multivariate pattern classification techniques we were able to identify neurobiological markers providing reliable diagnostic information about OCD. The classifier-based fMRI paradigms proposed here might be integrated in future diagnostic procedures and treatment concepts.

Last update from database: 11.08.25, 05:41 (UTC)

Erkunden

Team

Eintragsart

Sprache

Thema