Ihre Suche

In authors or contributors
Team

Ergebnisse 8 Einträge

  • Yogic breathing techniques are fundamental to the physical and mental practice of yoga. They are closely connected to meditation, which involves the observation of breath. There are many yogic techniques based on the active regulation of the breath. Breathing practices influence many processes in the body, e.g. heart rate variability, and the mind, e.g. relaxation and stress, through their impact on the autonomic nervous system. This study intended to investigate differential effects of four yogic breathing techniques: (1) ujjayi—relaxation through slowing down the breath, (2) paced breathing—enhancement of concentration by following a precise protocol of slowdown breathing, (3) kapalabhati—raising wakefulness by mild hyperventilation, and (4) alternate nostril breathing—balancing the autonomic nervous system by alternating breath between the two nostrils. This study was conducted on 36 participants, who learned each technique within two weeks of an eight-week program and practiced them daily. After each technique, mindfulness, perceived stress, and physical well-being were assessed based on questionnaires. Ujjayi breathing, showed a relaxing effect, reduced stress, increased peacefulness, and the feeling of being at ease/leisure. Paced breathing resulted in a greater awareness of inner experiences. Kapalabhati showed a significant increase in vitality and joy of life, and alternate nostril breathing showed no hypothesis-compliant changes. The findings of this study suggest several beneficial and differential effects of these breathing techniques; therefore, they could be employed as tools for self-regulation in therapeutic contexts.

  • Goal: We aimed to identify electroencephalographic (EEG) signal fluctuations within independent components (ICs) that correlate to spontaneous blood oxygenation level dependent (BOLD) activity in regions of the default mode network (DMN) during eyes-closed resting state. Methods: We analyzed simultaneously acquired EEG and functional magnetic resonance imaging (fMRI) eyes-closed resting state data in a convenience sample of 30 participants. IC analysis (ICA) was used to decompose the EEG time-series and common ICs were identified using data-driven IC clustering across subjects. The IC time courses were filtered into seven frequency bands, convolved with a hemeodynamic response function (HRF) and used to model spontaneous fMRI signal fluctuations across the brain. In parallel, group ICA analysis was used to decompose the fMRI signal into ICs from which the DMN was identified. Frequency and IC cluster associated hemeodynamic correlation maps obtained from the regression analysis were spatially correlated with the DMN. To investigate the reliability of our findings, the analyses were repeated with data collected from the same subjects 1 year later. Results: Our results indicate a relationship between power fluctuations in the delta, theta, beta and gamma frequency range and the DMN in different EEG ICs in our sample as shown by small to moderate spatial correlations at the first measurement (0.234 < |r| < 0.346, p < 0.0001). Furthermore, activity within an EEG component commonly identified as eye movements correlates with BOLD activity within regions of the DMN. In addition, we demonstrate that correlations between EEG ICs and the BOLD signal during rest are in part stable across time. Discussion: We show that ICA source separated EEG signals can be used to investigate electrophysiological correlates of the DMN. The relationship between the eye movement component and the DMN points to a behavioral association between DMN activity and the level of eye movement or the presence of neuronal activity in this component. Previous findings of an association between frontal midline theta activity and the DMN were replicated.

  • This study investigated differences in brain activation during meditation between meditators and non-meditators. Fifteen Vipassana meditators (mean practice: 7.9 years, 2h daily) and fifteen non-meditators, matched for sex, age, education, and handedness, participated in a block-design fMRI study that included mindfulness of breathing and mental arithmetic conditions. For the meditation condition (contrasted to arithmetic), meditators showed stronger activations in the rostral anterior cingulate cortex and the dorsal medial prefrontal cortex bilaterally, compared to controls. Greater rostral anterior cingulate cortex activation in meditators may reflect stronger processing of distracting events. The increased activation in the medial prefrontal cortex may reflect that meditators are stronger engaged in emotional processing.

  • The majority of neuroimaging studies on affective processing have indicated that there are specific brain structures, which are selectively responsive to fear and disgust. Whereas the amygdala is assumed to be fear-related, the insular cortex is most likely involved in disgust processing. Since these findings are mainly a result of studies focusing exclusively either on fear, or on disgust, but rarely on both emotions together, the present experiment explored the neural effects of viewing disgusting and fear-inducing pictures in contrast to neutral pictures. This was done by means of functional magnetic resonance imaging (fMRI) with 19 subjects (nine males, ten females), who also gave affective ratings for the presented pictures. The fear and the disgust pictures were able to induce the target emotions and they received comparable valence and arousal ratings. The processing of both aversive picture types was associated with an increased brain activation in the occipital-temporal lobe, in the prefrontal cortex, and in the thalamus. The amygdala was significantly activated by disgusting, but not by fear-inducing, pictures. Thus, our data are in contrast with the idea of highly emotion-specific brain structures and rather suggest the existence of a common affective circuit.

  • Findings from animal as well as human neuroimaging studies suggest that reward delivery is associated with the activation of subcortical limbic and prefrontal brain regions, including the thalamus, the striatum, the anterior cingulate and the prefrontal cortex. The aim of the present study was to explore if these reward-sensitive regions are also activated during the anticipation of reinforcers that vary with regard to their motivational value. A differential conditioning paradigm was performed, with the presentation of a rewarded reaction time task serving as the unconditioned stimulus (US). Depending on their reaction time, subjects were given (or not given) a monetary reward, or were presented with a verbal feedback consisting of being fast or slow. In a third control condition no task needed to be executed. Each of the three conditions was introduced by a different visual cue (CS). Brain activation of 27 subjects was recorded using event-related functional magnetic resonance imaging. The results showed significant activation of the substantia nigra, thalamic, striatal, and orbitofrontal brain regions as well as of the insula and the anterior cingulate during the presentation of a CS signalling a rewarded task. The anticipation of a monetary reward produced stronger activation in these regions than the anticipation of positive verbal feedback. The results are interpreted as reflecting the motivation-dependent reactivity of the brain reward system with highly motivating stimuli (monetary reward) leading to a stronger activation than those less motivating ones (verbal reward).

  • Many studies investigating music processing in adult musicians and nonmusicians point towards pronounced behavioral and neurophysiological differences between the two groups. Recent studies indicate that these differences can already be found in early childhood. Further, electro-encephalography studies using musical discrimination tasks have demonstrated that differences in music processing become more pronounced when explicitly rather than implicitly trained musical abilities are required. Exploring the functional neuroanatomy underlying the processing of different expectation violations in children and its association with musical training, we investigated neural responses to different melodic deviances in musically trained and untrained children. Using functional magnetic resonance imaging, children (aged 11-14 years) were examined while comparing pairs of short melodies that were either identical or differed with respect to four notes. The implemented deviances were either subtle (by inserting plausible in-key notes) or obvious (by inserting implausible out-of-key notes). Our results indicate a strong association between musical training and functional neuroanatomy of the brain. Similar to research on music processing in adults, the processing of obvious melodic deviances activated a network involving inferior frontal, premotor and anterior insula regions in musically trained and untrained children. By contrast, subtle deviances led to activation in the inferior frontal and premotor cortex, the anterior insula, the superior temporal gyrus, and the supramarginal gyrus in musically trained children only. Our work provides further insights into the functional neuroanatomy of melody processing and its association with musical training in children, providing the basis for further studies specifying distinct musical processes (e.g. contour and interval processing).

  • We investigated subjective and hemodynamic responses towards disgust-inducing, fear-inducing, and neutral pictures in a functional magnetic resonance imaging study. Within an interval of 1 week, 24 male subjects underwent the same block design twice in order to analyze possible response changes to the repeated picture presentation. The results showed that disgust-inducing and fear-inducing scenes provoked a similar activation pattern in comparison to neutral scenes. This included the thalamus, primary and secondary visual fields, the amygdala, the hippocampus, and various regions of the prefrontal cortex. During the retest, the affective ratings hardly changed. In contrast, most of the previously observed brain activations disappeared, with the exception of the temporo-occipital activation. An additional analysis, which compared the emotion-related activation patterns during the two presentations, showed that the responses to the fear-inducing pictures were more stable than the responses to the disgust-inducing ones.

  • The aim of this fMRI study was to explore brain structures that are involved in the processing of erotic and disgust-inducing pictures. The stimuli were chosen to trigger approach and withdrawal tendencies, respectively. By adding sadomasochistic (SM) scenes to the design and examining 12 subjects with and 12 subjects without sadomasochistic preferences, we introduced a picture category that induced erotic pleasure in one sample and disgust in the other sample. Since we also presented neutral pictures, all subjects viewed pictures of four different categories: neutral, disgust-inducing, erotic, and SM erotic pictures. The analysis indicated that several brain structures are commonly involved in the processing of disgust-inducing and erotic pictures (occipital cortex, hippocampus, thalamus, and the amygdala). The ventral striatum was specifically activated when subjects saw highly sexually arousing pictures. This indicates the involvement of the human reward system during the processing of visual erotica.

Last update from database: 11.08.25, 05:41 (UTC)