Ihre Suche

In authors or contributors

Ergebnisse 79 Einträge

  • Theta increases with workload and is associated with numerous processes including working memory, problem solving, encoding, or self monitoring. These processes, in turn, involve numerous structures of the brain. However, the relationship between regional brain activity and the occurrence of theta remains unclear. In the present study, simultaneous EEG-fMRI recordings were used to investigate the functional topography of theta. EEG-theta was enhanced by mental arithmetic-induced workload. For the EEG-constrained fMRI analysis, theta-reference time-series were extracted from the EEG, reflecting the strength of theta occurrence during the time course of the experiment. Theta occurrence was mainly associated with activation of the insular cortex, hippocampus, superior temporal areas, cingulate cortex, superior parietal, and frontal areas. Though observation of temporal and insular activation is in accord with the theory that theta specifically reflects encoding processes, the involvement of several other brain regions implies that surface-recorded theta represents comprehensive functional brain states rather than specific processes in the brain. The results provide further evidence for the concept that emergent theta band oscillations represent dynamic functional binding of widely distributed cortical assemblies, essential for cognitive processing. This binding process may form the source of surface-recorded EEG theta.

  • Inconsistent findings from several functional magnetic resonance imaging (fMRI) studies on fear and disgust raise the question which brain regions are relatively specialized and which are general in the processing of these basic emotions. Some of these inconsistencies could partially be due to inter-individual differences in the experience of the applied emotional stimuli. In the present study, we therefore correlated the participants' individual online reports of fear and disgust with their hemodynamic responses towards each of the fear- and disgust-inducing scenes. Sixty six participants (32 females) took part in the fMRI study. In an event-related design, they saw 50 pictures with different emotional impact (10 neutral, 20 disgust-inducing, 20 fear-inducing). Pictures were presented for 4 s and participants rated each picture online - just after the presentation - on the dimensions disgust and fear among others. The results indicate that the processing of disgust- and fear-inducing pictures involves similar as well as distinct brain regions. Both emotional stimulus categories resulted in activations in the extended occipital cortex, in the prefrontal cortex, and in the amygdala. However, insula activations were only significantly correlated with subjective ratings of disgust, pointing to a specific role of this brain structure in the processing of disgust.

  • Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.

  • This study investigated differences in brain activation during meditation between meditators and non-meditators. Fifteen Vipassana meditators (mean practice: 7.9 years, 2h daily) and fifteen non-meditators, matched for sex, age, education, and handedness, participated in a block-design fMRI study that included mindfulness of breathing and mental arithmetic conditions. For the meditation condition (contrasted to arithmetic), meditators showed stronger activations in the rostral anterior cingulate cortex and the dorsal medial prefrontal cortex bilaterally, compared to controls. Greater rostral anterior cingulate cortex activation in meditators may reflect stronger processing of distracting events. The increased activation in the medial prefrontal cortex may reflect that meditators are stronger engaged in emotional processing.

  • In emotional learning tasks, sex differences, stress effects and an interaction of these two moderators have often been observed. The sex hormones estradiol (E2) and progesterone (P4) vary over the menstrual cycle. We tested groups with different sex hormone status: 39 men, 30 women in the luteal phase (LU, high E2+P4) and 29 women taking oral contraceptives (OC, low E2+P4). They received either 30 mg cortisol or placebo prior to instructed differential fear conditioning consisting of neutral conditioned stimuli (CS) and an electrical stimulation (unconditioned stimulus; UCS). One figure (CS+) was paired with the UCS, the other figure (CS-) never. During extinction, no electrical stimulation was administered. Regarding fear acquisition, results showed higher skin conductance and higher brain responses to the CS+ compared to the CS- in several structures that were not modulated by cortisol or sex hormones. However, OC women exhibited higher CS+/CS- differentiations than men and LU women in the amygdala, thalamus, anterior cingulate and ventromedial prefrontal cortex during extinction. The suppression of endogenous sex hormones by OC seems to alter neuronal correlates of extinction. The observation that extinction is influenced by the current sex hormone availability is relevant for future studies and might also be clinically important.

  • Previously, we observed cortisol induced enhancement of neural fear acquisition in women. Yet, less is known about cortisol effects on neural fear extinction. Via differential fear conditioning, we explored cortisol effects on acquisition and extinction. Twenty contingency aware women taking monophasic oral contraceptives were included; 10 received placebo, 10 cortisol before conditioning. Group differences emerged in anterior cingulate cortex (ACC), hippocampus, and--as trend--in insula and thalamus during acquisition and in hippocampus, thalamus, and--as trend--in amygdala, insula, and ACC during extinction. During acquisition group differences were due to higher responses to the CS+ than to the CS- in the cortisol group. Notably, during extinction, group differences were due to higher responses to the CS- than to the CS+ in this group. Thus, cortisol induced a fear acquisition and extinction specific enhanced neural differentiation.

  • RATIONALE: Biased processing of drug-associated stimuli is believed to be a crucial feature of addiction. Particularly, an attentional bias seems to contribute to the disorder's maintenance. Recent studies suggest differential effects for stimuli associated with the beginning (BEGIN-smoking-stimuli) or the terminal stage of the smoking ritual (END-smoking-stimuli), with the former but not the later evoking high cue-reactivity. OBJECTIVE: The current study investigated the neuronal network underlying an attentional bias to BEGIN-smoking-stimuli and END-smoking-stimuli in smokers and tested the hypothesis that the attentional bias is greater for BEGIN-smoking-stimuli. METHODS: Sixteen non-deprived smokers and 16 non-smoking controls participated in an fMRI study. Drug pictures (BEGIN-smoking-stimuli, END-smoking-stimuli) and control pictures were overlaid with geometrical figures and presented for 300 ms. Subjects had to identify picture content (identification-task) or figure orientation (distraction-task). The distraction-task was intended to demonstrate attentional bias. RESULTS: Behavioral data revealed an attentional bias to BEGIN-smoking-stimuli but not to END-smoking-stimuli in both groups. However, only smokers showed mesocorticolimbic deactivations in the distraction-task with BEGIN-smoking-stimuli. Importantly, these deactivations were significantly stronger for BEGIN- than for END-smoking-stimuli and correlated with the attentional bias score. CONCLUSIONS: Several explanations may account for missing group differences in behavioral data. Brain data suggest smokers using regulatory strategies in response to BEGIN-smoking-stimuli to prevent the elicitation of motivational responses interfering with distraction-task performance. These strategies could be reflected in the observed deactivations and might lead to a performance level in smokers that is similar to that of non-smokers.

  • BACKGROUND: Current models suggest that a variation in the promoter region of the serotonin transporter gene (5-HTTLPR) is associated with altered amygdala reactivity not only towards negative but also towards positive stimuli, which has been neglected in the past. This association may possibly convey an elevated vulnerability for psychopathology like abuse, craving, and relapses. Since appetitive conditioning is a crucial mechanism in the pathogenesis of these psychiatric disorders, the identification of specific factors contributing to interindividual variation is important. METHODS: In the present study (N = 86), an appetitive conditioning paradigm was conducted, in which a neutral stimulus (CS+) was associated with appetitive stimuli, while a second stimulus (CS-) predicted their absence. Subjects were genotyped according to the 5-HTTLPR genotype. RESULTS: As the main result, we report a significant association between the 5-HTTLPR genotype and hemodynamic responses. Individuals with the s-allele displayed elevated conditioned bilateral amygdala activity in contrast to l/l-allele carriers. Further, increased hemodynamic responses in s-allele carriers were also found in the extended emotional network including the orbitofrontal cortex, the thalamus, and the ventral striatum. CONCLUSION: The present findings indicate an association of the 5-HTTLPR and altered conditioned responses in appetitive conditioning. Further, the findings contribute to the ongoing debate on 5-HTTLPR dependent hemodynamic response patterns by emphasizing that s-allele carriers are not exclusively biased towards fearful, but also towards positive stimuli. In conclusion, our results imply that s-allele carriers might be better described as hyper-reactive towards salient stimuli, which may convey vulnerability for the development of psychiatric disorders.

  • Converging lines of research suggest that exaggerated disgust responses play a crucial role in the development and maintenance of certain anxiety disorders. One strategy that might effectively alter disgust responses is counterconditioning. In this study, we used functional magnetic resonance imaging (fMRI) to examine if the neuronal bases of disgust responses are altered through a counterconditioning procedure. One disgust picture (conditioned stimulus: CS+disg) announced a monetary reward, while a second disgust picture (CS-disg) was never paired with the reward. Two neutral control pictures (CS+con/CS-con) were conditioned in the same manner. Analyses of evaluative conditioning showed that both CS+ were rated significantly more positive after conditioning as compared to the corresponding CS-. Thereby, the CS+disg and the CS+con received an equal increase in valence ratings. Regarding the fMRI data, ANOVA results showed main effects of the conditioning procedure (i.e., CS+ vs. CS-) in the dorsal anterior cingulate cortex. Further, main effects of the picture category (disgust vs. control) were found in the bilateral insula and the orbitofrontal cortex. No interaction effects were detected. In conclusion, the results imply that learning and anticipation of reward was not significantly influenced by the disgust content of the CS pictures. This suggests that the affect induced by the disgust pictures and the affect created by the anticipation of reward may not influence the processing of each other.

  • An important feature of the human defense system comprises fear learning, which stress hormones can crucially modulate. However, stress hormones might influence men and women differently, in part because of interactions with sex hormones. In women, distinct stages of the menstrual cycle or the intake of oral contraceptives (OC) affect sex hormone levels. In this study, we used a differential fear conditioning paradigm with electrical stimulation as unconditioned stimulus (UCS) following one neutral stimulus (conditioned stimulus, CS+), but not another (CS-).To investigate implicit fear learning, participants were distracted from detecting the contingencies between CS and UCS. To address interaction effects of sex and stress hormones, 32 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women received either 30 mg cortisol or a placebo. In the contrast CS+ minus CS-, an interaction between cortisol administration and sex hormone status emerged in the anterior parahippocampal gyrus and the hippocampus. Cortisol reduced fear learning in men, FO, and LU women, but enhanced it in OC women. Additionally, cortisol attenuated differential amygdala activation in the entire group. These results demonstrate that OC usage substantially modifies cortisol effects on emotional learning in women, particularly in memory-related medial temporal lobe regions. Further, a high dose of cortisol reduces amygdala differentiation pointing to a lowered learning ability of the defense system under high cortisol concentrations, irrespective of current sex hormone availability.

  • This study investigated differences in brain activation during meditation between meditators and non-meditators. Fifteen Vipassana meditators (mean practice: 7.9 years, 2h daily) and fifteen non-meditators, matched for sex, age, education, and handedness, participated in a block-design fMRI study that included mindfulness of breathing and mental arithmetic conditions. For the meditation condition (contrasted to arithmetic), meditators showed stronger activations in the rostral anterior cingulate cortex and the dorsal medial prefrontal cortex bilaterally, compared to controls. Greater rostral anterior cingulate cortex activation in meditators may reflect stronger processing of distracting events. The increased activation in the medial prefrontal cortex may reflect that meditators are stronger engaged in emotional processing.

  • The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  • Fear conditioning is influenced by stress but opposing effects in males and females have often been reported. In a previous human functional magnetic resonance imaging (fMRI) study, we observed acute effects of the stress hormone cortisol on prefrontal structures. Men showed evidence for impaired fear conditioning after cortisol treatment, while the opposite pattern was found for women. In the current experiment, we tested whether similar sex-dependent effects would occur on the neural level if contingency awareness was prevented experimentally to investigate implicit learning processes. A differential fear conditioning experiment with transcutaneous electrical stimulation as unconditioned stimulus and geometric figures as conditioned stimuli (CS) was conducted. One figure was always paired (CS+), whereas the other (CS-) was never paired with the UCS. Thirty-nine (19 female) subjects participated in this fMRI study, receiving either placebo or 30 mg cortisol (hydrocortisone) before conditioning. Dependent variables were skin conductance responses (SCRs) and neural activity (BOLD signal). In line with prior findings in unaware participants, no differential learning could be observed for the SCRs. However, a sex x cortisol interaction was detected with a reduced mean response to the CS after cortisol treatment in men, while the opposite pattern was observed in women (enhanced mean SCR under cortisol). In the contrast CS+ minus CS-, neural activity showed a sex x cortisol interaction in the insula and further trends in the hippocampus and the thalamus. In these regions, cortisol reduced the CS+/CS- differentiation in men but enhanced it in women. In contrast to these sex specific effects, differential amygdala activation was found in the placebo group but not in the cortisol group, irrespective of sex. Further, differential neural activity in the amygdala and thalamus were positively correlated with the SCRs in the placebo group only. The present study in contingency unaware participants illustrates that cortisol has in some brain regions sex specific effects on neural correlates of emotional learning. These effects might translate into a different vulnerability of the two sexes for anxiety disorders.

  • In an fMRI study, effects of contingency awareness on conditioned responses were assessed in three groups comprising 118 subjects. A differential fear-conditioning paradigm with visual conditioned stimuli, an electrical unconditioned stimulus and two distractors was applied. The instructed aware group was informed about the contingencies, whereas the distractors prevented contingency detection in the unaware group. The third group (learned aware) was not informed about the contingencies, but learned them despite the distractors. Main effects of contingency awareness on conditioned responses emerged in several brain structures. Post hoc tests revealed differential dorsal anterior cingulate, insula and ventral striatum responses in aware conditioning only, whereas the amygdala was activated independent of contingency awareness. Differential responses of the hippocampus were specifically observed in learned aware subjects, indicating a role in the development of contingency awareness. The orbitofrontal cortex showed varying response patterns: lateral structures showed higher responses in instructed aware than unaware subjects, the opposite was true for medial parts. Conditioned subjective and electrodermal responses emerged only in the two aware groups. These results confirm the independence of conditioned amygdala responses from contingency awareness and indicate specific neural circuits for different aspects of fear acquisition in unaware, learned aware and instructed aware subjects.

  • Drug-associated stimuli (cues) have a prominent role in addiction research because they are able to provoke craving and relapses. Generally, drug cues are seen as conditioned excitatory stimuli, which elicit drug seeking and usage. However, newer data suggest differential effects for smoking stimuli depending on their stage in the smoking ritual. Specifically, stimuli associated with the terminal stage of smoke consumption (END-stimuli) may evoke reactivity opposite to the reactivity evoked by stimuli associated with the beginning of smoke consumption (BEGIN-stimuli). This fMRI study compared 20 nondeprived smokers with 20 nonsmokers to unravel the influence of smoking-related pictures displaying the beginning (BEGIN-stimuli) and termination (END-stimuli) of the smoking ritual on neural activity in the addiction network. In addition, 20 deprived smokers (12 h deprivation) were investigated to explore the effects of deprivation on the processing of these stimuli. In nondeprived smokers, BEGIN-stimuli reliably activated the addiction network (for example, the ventral striatum, orbitofrontal cortex, and anterior cingulate cortex (ACC)). In contrast, END-stimuli triggered a differential pattern of activations as well as deactivations; deactivations were found in the ventral striatum and the ACC. Deprivation had no clear effect on the responses triggered by BEGIN-stimuli, but affected the reactivity to END-stimuli. Our data clearly suggest that stimuli associated with different stages of the smoking ritual trigger differential neuronal responses. While BEGIN-stimuli generally seem to activate the addiction network, END-stimuli presumably have some inhibitory properties. This new finding might add to a more differentiated understanding of cue reactivity and addiction.

  • INTRODUCTION: Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. AIM: Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. METHODS: The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. MAIN OUTCOME MEASURES: Blood oxygen level-dependent responses measured by fMRI and subjective ratings. RESULTS: A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. CONCLUSION: Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males.

  • The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.

  • Fear acquisition and extinction are crucial mechanisms in the etiology and maintenance of anxiety disorders. Moreover, they might play a pivotal role in conveying the influence of genetic and environmental factors on the development of a (more or less) stronger proneness for, or resilience against psychopathology. There are only few insights in the neurobiology of genetically and environmentally based individual differences in fear learning and extinction. In this functional magnetic resonance imaging study, 74 healthy subjects were investigated. These were invited according to 5-HTTLPR/rs25531 (S+ vs. L(A)L(A); triallelic classification) and TPH2 (G(-703)T) (T+ vs. T-) genotype. The aim was to investigate the influence of genetic factors and traumatic life events on skin conductance responses (SCRs) and neural responses (amygdala, insula, dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal cortex (vmPFC)) during acquisition and extinction learning in a differential fear conditioning paradigm. Fear acquisition was characterized by stronger late conditioned and unconditioned responses in the right insula in 5-HTTLPR S-allele carriers. During extinction traumatic life events were associated with reduced amygdala activation in S-allele carriers vs. non-carriers. Beyond that, T-allele carriers of the TPH2 (G(-703)T) polymorphism with a higher number of traumatic life events showed enhanced responsiveness in the amygdala during acquisition and in the vmPFC during extinction learning compared with non-carriers. Finally, a combined effect of the two polymorphisms with higher responses in S- and T-allele carriers was found in the dACC during extinction. The results indicate an increased expression of conditioned, but also unconditioned fear responses in the insula in 5-HTTLPR S-allele carriers. A combined effect of the two polymorphisms on dACC activation during extinction might be associated with prolonged fear expression. Gene-by-environment interactions in amygdala and vmPFC activation may reflect a neural endophenotype translating genetic and adverse environmental influences into vulnerability for or resilience against developing affective psychopathology.

  • Dopamine is known as the main neurotransmitter modulating the activation of the reward system of the brain. The DRD2 TaqIA polymorphism is associated with dopamine D2 receptor density which plays an important role in the context of reward. Persons carrying an A1 allele have a lower D2 receptor density and a higher risk to show substance abuse. The present study was designed to investigate the influence of the DRD2 TaqIA polymorphism and the selective D2 receptor agonist bromociptine on the activation of the reward system by means of functional magnetic resonance imaging (fMRI). In a double-blind crossover study with 24 participants we found an increase of reward system activation from placebo to bromocriptine only in subjects carrying the A1 allele. Furthermore, only A1 carrier showed an increase of performance under bromocriptine. The results are interpreted as reflecting a specific sensitivity for dopamine agonists in persons carrying an A1 allele and may complement actual data and theories of the development of addiction disorders postulating a higher genetic risk for substance abuse in carrier of the A1 allele.

  • The majority of neuroimaging studies on affective processing have indicated that there are specific brain structures, which are selectively responsive to fear and disgust. Whereas the amygdala is assumed to be fear-related, the insular cortex is most likely involved in disgust processing. Since these findings are mainly a result of studies focusing exclusively either on fear, or on disgust, but rarely on both emotions together, the present experiment explored the neural effects of viewing disgusting and fear-inducing pictures in contrast to neutral pictures. This was done by means of functional magnetic resonance imaging (fMRI) with 19 subjects (nine males, ten females), who also gave affective ratings for the presented pictures. The fear and the disgust pictures were able to induce the target emotions and they received comparable valence and arousal ratings. The processing of both aversive picture types was associated with an increased brain activation in the occipital-temporal lobe, in the prefrontal cortex, and in the thalamus. The amygdala was significantly activated by disgusting, but not by fear-inducing, pictures. Thus, our data are in contrast with the idea of highly emotion-specific brain structures and rather suggest the existence of a common affective circuit.

Last update from database: 11.08.25, 05:41 (UTC)

Erkunden

Team

Eintragsart

Sprache

Thema