Ihre Suche
Ergebnisse 31 Einträge
-
Aversive social learning experiences might play a significant role in the aetiology of social anxiety disorder. Therefore, we investigated emotional learning and unlearning processes in healthy humans using a social conditioning paradigm. Forty-nine healthy subjects participated in a 2-day fMRI differential conditioning protocol. Acquisition and extinction were conducted on Day 1 and extinction recall on Day 2. BOLD responses, ratings and skin conductance responses were collected. Our data indicate successful conditioning and extinction on the neural and subjective level. As a main result, we observed a positive correlation of social anxiety and conditioning responses on the subjective level (valence and fear) as well as on the neural level with significant CS(+)/CS(-) differentiation in the left amygdala and the left hippocampus. Further, significant CS(+)/CS(-) differentiation in the left amygdala was found during extinction and was associated with lower scores in social anxiety. During extinction recall, we found a tendentially negative correlation of social anxiety and CS(+)/CS(-) differentiation in the vmPFC. In sum, we were able to show that social anxiety is related to conditionability with socially threatening stimuli. This could point to an important aspect in the aetiology of social anxiety disorder.
-
Functional magnetic resonance imaging (fMRI) studies consistently demonstrate an enhanced activation of the visual cortex in reaction to emotionally salient visual stimuli. This increase of activation is probably modulated by top-down processes, that are initiated in emotion processing structures, specifically the amygdala and the orbitofrontal cortex. In the present fMRI study, a differential fear conditioning paradigm was applied to investigate this assumed modulation. Hemodynamic responses towards a neutral visual stimulus (CS+) predicting an electrical stimulation (UCS) were compared with responses towards a neutral and unpaired stimulus (CS-). Thereby, particularly the time courses of neural responses were considered. Skin conductance measures were concurrently recorded. Our results show that the differentiation between CS+ and CS- within the amygdala and the extended visual cortex was accomplished during a late acquisition phase. In the orbitofrontal cortex the differentiation occurred at an earlier stage and was then sustained throughout acquisition. It is suggested that these altering activation patterns are reflecting different phases of learning, integrating the analyzed regions to varying degrees. Additionally, the results indicate that statistical analyses comprising a temporal variation of hemodynamic responses are more likely to detect amygdala activation.
-
The simulation concept suggested by Jeannerod (Neuroimage 14:S103-S109, 2001) defines the S-states of action observation and mental simulation of action as action-related mental states lacking overt execution. Within this framework, similarities and neural overlap between S-states and overt execution are interpreted as providing the common basis for the motor representations implemented within the motor system. The present brain imaging study compared activation overlap and differential activation during mental simulation (motor imagery) with that while observing gymnastic movements. The fMRI conjunction analysis revealed overlapping activation for both S-states in primary motor cortex, premotor cortex, and the supplementary motor area as well as in the intraparietal sulcus, cerebellar hemispheres, and parts of the basal ganglia. A direct contrast between the motor imagery and observation conditions revealed stronger activation for imagery in the posterior insula and the anterior cingulate gyrus. The hippocampus, the superior parietal lobe, and the cerebellar areas were differentially activated in the observation condition. In general, these data corroborate the concept of action-related S-states because of the high overlap in core motor as well as in motor-related areas. We argue that differential activity between S-states relates to task-specific and modal information processing.
-
This functional magnetic resonance imaging study investigated long-term effects of cognitive behavior therapy (CBT) in individuals suffering from spider phobia. Ten female patients who had shown positive immediate CBT effects were invited to take part in a 6-month follow-up investigation. Here, the patients, along with eight non-phobic females, were presented with the same pictures depicting spiders, generally disgust-inducing, generally fear-inducing and neutral content, which they had viewed 6 months earlier. Patients' self-report and overt behavior indicated a positive long-term clinical improvement. Related hemodynamic changes included an increase in medial orbitofrontal cortex (OFC) activity. As the medial OFC is involved in emotion-related learning, especially in the representation of positive stimulus-outcome associations, we conclude that the medial OFC effect constitutes the neuronal basis of the lasting positive CBT outcome. Activity to disorder-irrelevant pictures decreased across the sessions in the lateral OFC and in the insula, which most likely reflects general habituation.
-
Cognitive reappraisal and expressive suppression, two major emotion regulation strategies, are differentially related to emotional well-being. The aim of this study was to test the association of individual differences in these two emotion regulation strategies with gray matter volume of brain regions that have been shown to be involved in the regulation of emotions. Based on high-resolution magnetic resonance images of 96 young adults voxel-based morphometry was used to analyze the gray matter volumes of the a priori regions of interest, including amygdala, insula, dorsal anterior cingulate and paracingulate cortex, medial and lateral prefrontal cortex (PFC) and their association with cognitive reappraisal and expressive suppression usage as well as neuroticism. A positive association of cognitive reappraisal with right and tendentially left amygdala volume and of neuroticism with left amygdala volume (marginally significant) was found. Expressive suppression was related to dorsal anterior cingulate/paracingulate cortex and medial PFC gray matter volume. The results of this study emphasize the important role of the amygdala in individual differences in cognitive reappraisal usage as well as neuroticism. Additionally, the association of expressive suppression usage with larger volumes of the medial PFC and dorsal anterior/paracingulate cortex underpins the role of these regions in regulating emotion-expressive behavior.
-
We examined the influence of disgust sensitivity and trait anxiety on disgust processing via functional magnetic resonance imaging. Data of 63 healthy females were combined across four studies, where the same disgusting and affectively neutral pictures had been presented. The disgust pictures, rated as highly repulsive, provoked activation in the occipital cortex, the left prefrontal cortex and both amygdalae. Disgust sensitivity and trait anxiety were positively, and independently from each other, correlated with the activation of the right amygdala. This points to the role of the amygdala as an integrative brain structure, whose activation can be modulated by different affective styles.
-
This functional magnetic resonance imaging study investigated the disgust- and fear-reactivity of patients suffering from obsessive-compulsive disorder (OCD). Ten OCD patients were scanned while viewing blocks of pictures showing OCD triggers from their personal environment and OCD-irrelevant disgust-inducing, fear-inducing and neutral scenes. Afterwards, the patients rated the intensity of the induced disgust, fear and OCD symptoms. The responses were compared with those of 10 healthy control subjects. The disorder-relevant pictures provoked intense OCD symptoms in the clinical group associated with increased activation in the bilateral prefrontal cortex, the left insula, the right supramarginal gyrus, the left caudate nucleus and the right thalamus. The patients gave higher disgust and fear ratings than the controls for all aversive picture categories. Neural responses towards the disorder-irrelevant disgusting and fear-inducing material included more pronounced insula activation in patients than controls. Summarizing, photos of individual OCD-triggers are an effective means of symptom provocation and activation of the fronto-striato-thalamo-parietal network. The increased insular reactivity of OCD patients during all aversive picture conditions might mirror their susceptibility to experience negative somatic states.
-
The present functional magnetic resonance imaging study investigated the fear and disgust reactivity of patients suffering from spider phobia. Ten phobics and 13 control subjects were scanned while viewing alternating blocks of phobia-relevant, generally fear-inducing, disgust-inducing and affectively neutral pictures. The patient group rated the spider pictures as being more disgust and fear evoking than the control group, and showed greater activation of the visual association cortex, the amygdalae, the right dorsolateral prefrontal cortex and the right hippocampus. Specific phobia-related activation occurred in the supplementary motor area. The patients also showed greater amygdala activation during the presentation of generally disgust- and fear-inducing pictures. This points to an elevated sensitivity to repulsive and threatening stimuli in spider phobics and implicates the amygdala as a crucial neural substrate.
-
Disgust extinction is an important mechanism relevant for the treatment of psychiatric disorders. However, only a few studies have investigated disgust extinction. Moreover, because disgust sensitivity (DS) is considered as a relevant factor for learning processes, this study also investigated the potential relationship between DS and disgust extinction learning. The aim of this study was to explore the neuronal correlates of disgust extinction, as well as changes in skin conductance responses (SCRs) and evaluative conditioning. Twenty subjects were exposed to a differential extinction paradigm, in which a previous conditioned, and now unreinforced, stimulus (conditioned stimulus, CS+) was compared to a second stimulus (CS-), which was previously not associated with the unconditioned stimulus (UCS). Extinction learning was measured on three different response levels (BOLD responses, SCRs, and evaluative conditioning). Regarding evaluative conditioning, the CS+ was rated as more unpleasant than the CS-. Interestingly, significantly increased amygdala responses and SCRs toward to the CS- were observed. Finally, a (negative) trend was found between DS scores and BOLD responses of the prefrontal cortex. The present findings showed a dissociation of different response levels. The increased CS- responses could be explained by the assumption that the increased amygdala activity may reflect a safety learning signal during the first extinction trials and the subjective focus may therefore shift from the CS+ to the CS-. The correlation finding supports previous studies postulating that DS hampers extinction processes. The present results point toward dissociations between the response levels in context of extinction processes.
-
BACKGROUND: Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain. RESULTS: Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. CONCLUSIONS: The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.
-
The major goal of the present functional magnetic resonance imaging study was to investigate the influence of disgust sensitivity on hemodynamic responses during disgust induction. Fifteen subjects viewed three different film excerpts (duration: 135 s each) with disgust-evoking, threatening and neutral content. The films were presented in a block design with four repetitions of each condition. Afterwards, subjects gave affective ratings for the films and answered the questionnaire for the assessment of disgust sensitivity (QADS, []). The subjects' overall disgust sensitivity was positively related to their experienced disgust, as well as to their prefrontal cortex activation during the disgust condition. Further, there was a positive correlation between subjects' scores on the QADS subscale spoilage/decay and their amygdala activation (r=0.76). This was reasonable since the disgust film clip depicted a cockroach-invasion and the subscale spoilage/decay contains, among others, an item asking for disgust towards cockroaches. The study stresses, in accordance to previous studies, the importance of considering personality traits when studying affective responses in fMRI studies.
-
Perceiving a first target stimulus (T1) in a rapid serial visual presentation stream results in a transient impairment in detecting a second target (T2). This "attentional blink" is modulated by the emotional relevance of T1 and T2. The present experiment examined the neural underpinnings of the emotional modulation of the attentional blink. Behaviorally, the attentional blink was reduced for emotional T2 while emotional T1 led to a prolonged attentional blink. Using functional magnetic resonance imaging, we observed amygdala activation associated with the reduced attentional blink for emotional T2 in the face of neutral T1. The prolonged attentional blink following emotional T1 was correlated with enhanced activity in a cortical network including the anterior cingulate cortex, the insula and the orbitofrontal cortex. These results suggest that brain areas previously implicated in rather reflexive emotional reactions are responsible for the reduced attentional blink for emotional T2 whereas neural structures previously related to higher level processing of emotional information mediate the prolonged attentional blink following emotional T1.
-
INTRODUCTION: Few studies so far have directly compared the neural processing of visual sexual stimuli in men and women. Also, most of these studies only compared sexual with neutral stimuli, making it difficult to disentangle sexual stimulus processing from general emotional processing. AIM: The current study aimed to explore gender commonalities and differences in neural activity associated with the processing of visual sexual stimuli in a large sample of 50 men and 50 women. In order to disentangle effects of sexual processing from those of general emotional processing, we employed sexual, neutral, positive, and negative emotional pictures. METHODS: Subjects passively viewed sexual, neutral, positive, and negative emotional pictures during a functional magnetic resonance imaging (fMRI) session. Pictures were presented in 24 blocks of five pictures each. Every block was rated immediately after its presentation with respect to valence, arousal, and sexual arousal. MAIN OUTCOME MEASURES: Blood oxygen level dependent responses measured by fMRI and subjective ratings. RESULTS: fMRI analysis revealed a distributed network for the neural processing of sexual stimuli comprising the hypothalamus, the nucleus accumbens, as well as orbitofrontal, occipital, and parietal areas. This network could be identified (i) for both men and women, with men showing overall stronger activations than women and (ii) independent of general emotional arousal or valence effects. CONCLUSION: Our data speak in favor of a common neural network associated with the processing of visual sexual stimuli in men and women. Apart from the observed gender commonalities, overall stronger responses in men were observed that might indicate stronger sexual responsivity in men.
-
Inconsistent findings from several functional magnetic resonance imaging (fMRI) studies on fear and disgust raise the question which brain regions are relatively specialized and which are general in the processing of these basic emotions. Some of these inconsistencies could partially be due to inter-individual differences in the experience of the applied emotional stimuli. In the present study, we therefore correlated the participants' individual online reports of fear and disgust with their hemodynamic responses towards each of the fear- and disgust-inducing scenes. Sixty six participants (32 females) took part in the fMRI study. In an event-related design, they saw 50 pictures with different emotional impact (10 neutral, 20 disgust-inducing, 20 fear-inducing). Pictures were presented for 4 s and participants rated each picture online - just after the presentation - on the dimensions disgust and fear among others. The results indicate that the processing of disgust- and fear-inducing pictures involves similar as well as distinct brain regions. Both emotional stimulus categories resulted in activations in the extended occipital cortex, in the prefrontal cortex, and in the amygdala. However, insula activations were only significantly correlated with subjective ratings of disgust, pointing to a specific role of this brain structure in the processing of disgust.
-
Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.
-
Previously, we observed cortisol induced enhancement of neural fear acquisition in women. Yet, less is known about cortisol effects on neural fear extinction. Via differential fear conditioning, we explored cortisol effects on acquisition and extinction. Twenty contingency aware women taking monophasic oral contraceptives were included; 10 received placebo, 10 cortisol before conditioning. Group differences emerged in anterior cingulate cortex (ACC), hippocampus, and--as trend--in insula and thalamus during acquisition and in hippocampus, thalamus, and--as trend--in amygdala, insula, and ACC during extinction. During acquisition group differences were due to higher responses to the CS+ than to the CS- in the cortisol group. Notably, during extinction, group differences were due to higher responses to the CS- than to the CS+ in this group. Thus, cortisol induced a fear acquisition and extinction specific enhanced neural differentiation.
-
Fear conditioning is influenced by stress but opposing effects in males and females have often been reported. In a previous human functional magnetic resonance imaging (fMRI) study, we observed acute effects of the stress hormone cortisol on prefrontal structures. Men showed evidence for impaired fear conditioning after cortisol treatment, while the opposite pattern was found for women. In the current experiment, we tested whether similar sex-dependent effects would occur on the neural level if contingency awareness was prevented experimentally to investigate implicit learning processes. A differential fear conditioning experiment with transcutaneous electrical stimulation as unconditioned stimulus and geometric figures as conditioned stimuli (CS) was conducted. One figure was always paired (CS+), whereas the other (CS-) was never paired with the UCS. Thirty-nine (19 female) subjects participated in this fMRI study, receiving either placebo or 30 mg cortisol (hydrocortisone) before conditioning. Dependent variables were skin conductance responses (SCRs) and neural activity (BOLD signal). In line with prior findings in unaware participants, no differential learning could be observed for the SCRs. However, a sex x cortisol interaction was detected with a reduced mean response to the CS after cortisol treatment in men, while the opposite pattern was observed in women (enhanced mean SCR under cortisol). In the contrast CS+ minus CS-, neural activity showed a sex x cortisol interaction in the insula and further trends in the hippocampus and the thalamus. In these regions, cortisol reduced the CS+/CS- differentiation in men but enhanced it in women. In contrast to these sex specific effects, differential amygdala activation was found in the placebo group but not in the cortisol group, irrespective of sex. Further, differential neural activity in the amygdala and thalamus were positively correlated with the SCRs in the placebo group only. The present study in contingency unaware participants illustrates that cortisol has in some brain regions sex specific effects on neural correlates of emotional learning. These effects might translate into a different vulnerability of the two sexes for anxiety disorders.
-
In an fMRI study, effects of contingency awareness on conditioned responses were assessed in three groups comprising 118 subjects. A differential fear-conditioning paradigm with visual conditioned stimuli, an electrical unconditioned stimulus and two distractors was applied. The instructed aware group was informed about the contingencies, whereas the distractors prevented contingency detection in the unaware group. The third group (learned aware) was not informed about the contingencies, but learned them despite the distractors. Main effects of contingency awareness on conditioned responses emerged in several brain structures. Post hoc tests revealed differential dorsal anterior cingulate, insula and ventral striatum responses in aware conditioning only, whereas the amygdala was activated independent of contingency awareness. Differential responses of the hippocampus were specifically observed in learned aware subjects, indicating a role in the development of contingency awareness. The orbitofrontal cortex showed varying response patterns: lateral structures showed higher responses in instructed aware than unaware subjects, the opposite was true for medial parts. Conditioned subjective and electrodermal responses emerged only in the two aware groups. These results confirm the independence of conditioned amygdala responses from contingency awareness and indicate specific neural circuits for different aspects of fear acquisition in unaware, learned aware and instructed aware subjects.
-
Drug-associated stimuli (cues) have a prominent role in addiction research because they are able to provoke craving and relapses. Generally, drug cues are seen as conditioned excitatory stimuli, which elicit drug seeking and usage. However, newer data suggest differential effects for smoking stimuli depending on their stage in the smoking ritual. Specifically, stimuli associated with the terminal stage of smoke consumption (END-stimuli) may evoke reactivity opposite to the reactivity evoked by stimuli associated with the beginning of smoke consumption (BEGIN-stimuli). This fMRI study compared 20 nondeprived smokers with 20 nonsmokers to unravel the influence of smoking-related pictures displaying the beginning (BEGIN-stimuli) and termination (END-stimuli) of the smoking ritual on neural activity in the addiction network. In addition, 20 deprived smokers (12 h deprivation) were investigated to explore the effects of deprivation on the processing of these stimuli. In nondeprived smokers, BEGIN-stimuli reliably activated the addiction network (for example, the ventral striatum, orbitofrontal cortex, and anterior cingulate cortex (ACC)). In contrast, END-stimuli triggered a differential pattern of activations as well as deactivations; deactivations were found in the ventral striatum and the ACC. Deprivation had no clear effect on the responses triggered by BEGIN-stimuli, but affected the reactivity to END-stimuli. Our data clearly suggest that stimuli associated with different stages of the smoking ritual trigger differential neuronal responses. While BEGIN-stimuli generally seem to activate the addiction network, END-stimuli presumably have some inhibitory properties. This new finding might add to a more differentiated understanding of cue reactivity and addiction.
-
INTRODUCTION: Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. AIM: Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. METHODS: The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. MAIN OUTCOME MEASURES: Blood oxygen level-dependent responses measured by fMRI and subjective ratings. RESULTS: A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. CONCLUSION: Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males.
Erkunden
Eintragsart
- Zeitschriftenartikel (31)
Thema
- Magnetic Resonance Imaging
- action mapping (1)
- action observation (1)
- Adaptation, Physiological/physiology (1)
- Adolescent (2)
- Adult (28)
- *Affect (1)
- Affective Symptoms/*physiopathology/psychology (1)
- amygdala (1)
- Amygdala/blood supply (1)
- Amygdala/blood supply/metabolism (1)
- Amygdala/*blood supply/*physiology (1)
- Amygdala/blood supply/*physiopathology (1)
- Amygdala/physiology (4)
- Amygdala/*physiology (1)
- Amygdala/physiopathology (1)
- Amygdala/*physiopathology (1)
- Analysis of Variance (3)
- Animals (3)
- Anxiety/*psychology (1)
- Anxiety/psychology (1)
- Arousal/physiology (3)
- Arousal/*physiology (1)
- Association Learning/*physiology (1)
- Attention/*physiology (2)
- Aversive Therapy (1)
- Avoidance Learning/physiology (1)
- Awareness (1)
- Awareness/physiology (2)
- Awareness/*physiology (1)
- Basal Ganglia/blood supply/metabolism (1)
- Basal Ganglia/physiology (1)
- Biomechanical Phenomena (1)
- Blinking/*physiology (1)
- Brain/*blood supply/metabolism (1)
- Brain/blood supply/pathology (1)
- Brain/*blood supply/physiology (1)
- Brain/*blood supply/*physiology (1)
- Brain Mapping (11)
- *Brain Mapping (3)
- Brain/*physiology (7)
- Brain/physiology (2)
- Brain/physiopathology (1)
- Brain/*physiopathology (2)
- Brain Stem/physiology (1)
- Cerebral Cortex/physiology (2)
- Cerebral Cortex/*physiology (1)
- Cerebral Cortex/physiopathology (1)
- Cerebrovascular Circulation/physiology (2)
- Cerebrovascular Circulation/*physiology (1)
- *Cognition (1)
- Cognition/*physiology (1)
- *Cognitive Behavioral Therapy (1)
- cognitive reappraisal (1)
- Conditioning, Classical/*physiology (4)
- Conditioning, Classical/physiology (1)
- Conditioning, Operant/*physiology (1)
- Conditioning, Psychological/*drug effects (1)
- Conditioning, Psychological/*physiology (2)
- Conditioning, Psychological/physiology (1)
- *Cues (1)
- Dancing (1)
- Dancing/physiology (1)
- DNA Mutational Analysis (1)
- Double-Blind Method (3)
- Electric Stimulation (4)
- Electromyography (1)
- emotion regulation (1)
- *Emotions (1)
- Emotions/*physiology (9)
- Emotions/physiology (2)
- *Erotica (1)
- *Erotica/psychology (1)
- Expressed Emotion/*physiology (1)
- expressive suppression (1)
- Extinction, Psychological (1)
- Extinction, Psychological/*physiology (2)
- Fear (1)
- Fear/*drug effects (1)
- Fear/*physiology (6)
- Fear/psychology (1)
- Fear/*psychology (3)
- Feedback/physiology (1)
- Female (28)
- Fixation, Ocular/physiology (1)
- fMRI (1)
- Follow-Up Studies (1)
- Foot/physiology (1)
- Frontal Lobe/blood supply (1)
- Frontal Lobe/*physiology (2)
- Frontal Lobe/physiology (2)
- Frontal Lobe/physiopathology (1)
- Functional Laterality (1)
- Functional Laterality/physiology (4)
- Functional Neuroimaging (2)
- Galvanic Skin Response (2)
- Galvanic Skin Response/genetics (1)
- Galvanic Skin Response/*physiology (2)
- Galvanic Skin Response/physiology (4)
- Genotype (1)
- Goals (1)
- Gymnastics/*physiology (1)
- Gyrus Cinguli/physiology (2)
- Habituation, Psychophysiologic (1)
- Hand/physiology (1)
- Hand Strength/*physiology (1)
- Hemodynamics (2)
- Hemodynamics/physiology (4)
- Hemodynamics/*physiology (3)
- Heterosexuality/*physiology/psychology (1)
- Hippocampus/blood supply/metabolism (1)
- Hippocampus/physiology (1)
- *Homosexuality, Male/psychology (1)
- Humans (31)
- Hydrocortisone/analysis/*metabolism (1)
- Hydrocortisone/*pharmacology (1)
- Hydrocortisone/*physiology (1)
- Image Interpretation, Computer-Assisted (1)
- Image Processing, Computer-Assisted (12)
- *Imagery, Psychotherapy (1)
- Imagination/*physiology (1)
- *Individuality (2)
- Learning/physiology (1)
- Life Change Events (1)
- Linear Models (2)
- Male (24)
- Memory, Short-Term/*physiology (1)
- Mental Recall (1)
- Middle Aged (1)
- Motion Perception/*physiology (2)
- Motivation/*physiology (1)
- Motor Activity/*physiology (2)
- Motor Cortex/*physiology (2)
- Motor Cortex/physiology (1)
- motor imagery (1)
- motor simulation (1)
- *Movement (1)
- Movement (1)
- Movement/*physiology (1)
- Neostriatum/physiology (1)
- Nerve Net/*physiology (2)
- Neural Pathways/*physiology (1)
- Neurons/*physiology (2)
- Neuropsychological Tests (2)
- Nucleus Accumbens/physiology (1)
- Obsessive-Compulsive Disorder/*physiopathology/psychology (1)
- Occipital Lobe/blood supply/metabolism (1)
- Occipital Lobe/physiology (3)
- Orientation/physiology (1)
- Oxygen/blood (5)
- Parietal Lobe/*physiology (3)
- Personality (1)
- Personality Inventory (1)
- Phobic Disorders/*pathology/psychology (1)
- Phobic Disorders/*physiopathology (2)
- Phobic Disorders/physiopathology/psychology/*therapy (1)
- Photic Stimulation (17)
- *Photic Stimulation (1)
- Physical Education and Training (1)
- Prefrontal Cortex/blood supply (1)
- Prefrontal Cortex/physiology (2)
- Prefrontal Cortex/*physiology (1)
- Psychiatric Status Rating Scales (2)
- Psychomotor Performance/*physiology (1)
- Psychomotor Performance/physiology (2)
- Reaction Time (1)
- Reaction Time/physiology (2)
- Recognition, Psychology/physiology (1)
- Recognition, Psychology/*physiology (1)
- Reproducibility of Results (1)
- *Reward (1)
- Reward (1)
- Saliva/chemistry (1)
- Serotonin Plasma Membrane Transport Proteins/*genetics (1)
- Sex Characteristics (4)
- Sex Factors (2)
- Sexual Behavior/*physiology (2)
- Sexual Behavior/physiology (1)
- Sexual Behavior/*physiology/psychology (1)
- Skin/blood supply (1)
- Smoking/*physiopathology (1)
- *Social Behavior (1)
- Somatosensory Cortex/physiology (1)
- somatotopic mapping (1)
- Space Perception/*physiology (1)
- *Spiders (1)
- Spiders (2)
- *Sports (1)
- Statistics as Topic (2)
- *Stress, Psychological/genetics/pathology/psychology (1)
- Students (1)
- Supine Position/physiology (1)
- Surveys and Questionnaires (6)
- Thalamus/blood supply/metabolism (1)
- Thalamus/physiology (1)
- Time Factors (2)
- Treatment Outcome (1)
- Video Recording (2)
- Visual Cortex/*blood supply/*physiology (1)
- Visual Cortex/physiology (1)
- Visual Fields/physiology (1)
- Visual Perception (3)
- Visual Perception/physiology (2)
- Visual Perception/*physiology (3)
- vmPFC (1)
- voxel-based morphometry (1)
- Young Adult (11)