Ihre Suche

In authors or contributors

Ergebnisse 7 Einträge

  • Functional magnetic resonance imaging (fMRI) studies consistently demonstrate an enhanced activation of the visual cortex in reaction to emotionally salient visual stimuli. This increase of activation is probably modulated by top-down processes, that are initiated in emotion processing structures, specifically the amygdala and the orbitofrontal cortex. In the present fMRI study, a differential fear conditioning paradigm was applied to investigate this assumed modulation. Hemodynamic responses towards a neutral visual stimulus (CS+) predicting an electrical stimulation (UCS) were compared with responses towards a neutral and unpaired stimulus (CS-). Thereby, particularly the time courses of neural responses were considered. Skin conductance measures were concurrently recorded. Our results show that the differentiation between CS+ and CS- within the amygdala and the extended visual cortex was accomplished during a late acquisition phase. In the orbitofrontal cortex the differentiation occurred at an earlier stage and was then sustained throughout acquisition. It is suggested that these altering activation patterns are reflecting different phases of learning, integrating the analyzed regions to varying degrees. Additionally, the results indicate that statistical analyses comprising a temporal variation of hemodynamic responses are more likely to detect amygdala activation.

  • Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.

  • Previously, we observed cortisol induced enhancement of neural fear acquisition in women. Yet, less is known about cortisol effects on neural fear extinction. Via differential fear conditioning, we explored cortisol effects on acquisition and extinction. Twenty contingency aware women taking monophasic oral contraceptives were included; 10 received placebo, 10 cortisol before conditioning. Group differences emerged in anterior cingulate cortex (ACC), hippocampus, and--as trend--in insula and thalamus during acquisition and in hippocampus, thalamus, and--as trend--in amygdala, insula, and ACC during extinction. During acquisition group differences were due to higher responses to the CS+ than to the CS- in the cortisol group. Notably, during extinction, group differences were due to higher responses to the CS- than to the CS+ in this group. Thus, cortisol induced a fear acquisition and extinction specific enhanced neural differentiation.

  • In an fMRI study, effects of contingency awareness on conditioned responses were assessed in three groups comprising 118 subjects. A differential fear-conditioning paradigm with visual conditioned stimuli, an electrical unconditioned stimulus and two distractors was applied. The instructed aware group was informed about the contingencies, whereas the distractors prevented contingency detection in the unaware group. The third group (learned aware) was not informed about the contingencies, but learned them despite the distractors. Main effects of contingency awareness on conditioned responses emerged in several brain structures. Post hoc tests revealed differential dorsal anterior cingulate, insula and ventral striatum responses in aware conditioning only, whereas the amygdala was activated independent of contingency awareness. Differential responses of the hippocampus were specifically observed in learned aware subjects, indicating a role in the development of contingency awareness. The orbitofrontal cortex showed varying response patterns: lateral structures showed higher responses in instructed aware than unaware subjects, the opposite was true for medial parts. Conditioned subjective and electrodermal responses emerged only in the two aware groups. These results confirm the independence of conditioned amygdala responses from contingency awareness and indicate specific neural circuits for different aspects of fear acquisition in unaware, learned aware and instructed aware subjects.

  • Fear conditioning is influenced by stress but opposing effects in males and females have often been reported. In a previous human functional magnetic resonance imaging (fMRI) study, we observed acute effects of the stress hormone cortisol on prefrontal structures. Men showed evidence for impaired fear conditioning after cortisol treatment, while the opposite pattern was found for women. In the current experiment, we tested whether similar sex-dependent effects would occur on the neural level if contingency awareness was prevented experimentally to investigate implicit learning processes. A differential fear conditioning experiment with transcutaneous electrical stimulation as unconditioned stimulus and geometric figures as conditioned stimuli (CS) was conducted. One figure was always paired (CS+), whereas the other (CS-) was never paired with the UCS. Thirty-nine (19 female) subjects participated in this fMRI study, receiving either placebo or 30 mg cortisol (hydrocortisone) before conditioning. Dependent variables were skin conductance responses (SCRs) and neural activity (BOLD signal). In line with prior findings in unaware participants, no differential learning could be observed for the SCRs. However, a sex x cortisol interaction was detected with a reduced mean response to the CS after cortisol treatment in men, while the opposite pattern was observed in women (enhanced mean SCR under cortisol). In the contrast CS+ minus CS-, neural activity showed a sex x cortisol interaction in the insula and further trends in the hippocampus and the thalamus. In these regions, cortisol reduced the CS+/CS- differentiation in men but enhanced it in women. In contrast to these sex specific effects, differential amygdala activation was found in the placebo group but not in the cortisol group, irrespective of sex. Further, differential neural activity in the amygdala and thalamus were positively correlated with the SCRs in the placebo group only. The present study in contingency unaware participants illustrates that cortisol has in some brain regions sex specific effects on neural correlates of emotional learning. These effects might translate into a different vulnerability of the two sexes for anxiety disorders.

  • INTRODUCTION: Learning processes like classical conditioning are involved in mediating sexual behavior. Yet, the neural bases underlying these processes have not been investigated so far. AIM: The aim of this study was to explore neural activations of classical conditioning of sexual arousal with respect to sex differences and contingency awareness. METHODS: In the acquisition phase, a geometric figure (CS+) was presented for 8 seconds and was followed by highly sexual arousing pictures (UCS), whereas another figure (CS-) predicted neutral pictures. Ratings and contingency awareness were assessed after the entire conditioning procedure. Forty subjects (20 females) were classified into one of four groups according to their sex and the development of contingency awareness (aware females, aware males, unaware females, and unaware males). MAIN OUTCOME MEASURES: Blood oxygen level dependent (BOLD) responses measured by functional magnetic resonance imaging (fMRI), skin conductance responses (SCRs), and subjective ratings. RESULTS: fMRI analysis showed two effects (awareness and sex) when comparing CS+ with CS-: (i) aware compared to unaware subjects showed enhanced differentiation (e.g., ventral striatum, orbitofrontal cortex, occipital cortex); and (ii) men showed increased activity compared to women in the amygdala, thalamus, and brainstem. CS+ and CS- ratings differed in aware subjects only. However, no conditioned SCRs occurred in any group. CONCLUSION: The increased activity in men is in line with theories postulating that men are generally more prone to conditioning of sexual arousal. Further, contingency awareness seems to be an important factor in appetitive learning processes, which facilitates conditioning processes.

  • The stress hormone cortisol is known to influence declarative memory and associative learning. In animals, stress has often been reported to have opposing effects on memory and learning in males and females. In humans, the effects of cortisol have mainly been studied at the behavioral level. The aim of the present experiment was to characterize the effects of a single cortisol dose (30 mg) on the hemodynamic correlates of fear conditioning. In a double-blind group comparison study subjects (17 females and 17 males) received 30 mg cortisol or placebo orally before participating in a discriminative fear conditioning paradigm. Results revealed that cortisol impaired electrodermal signs of learning (the first interval response) in males, while no conditioned SCRs emerged for the females independent of treatment. fMRI results showed that cortisol reduced activity for the CS+ > CS- comparison in the anterior cingulate, the lateral orbitofrontal cortex and the medial prefrontal cortex in males. Opposite findings (increase in these regions under cortisol) were detected in females. In addition, cortisol reduced the habituation in the CS+ > CS- contrast in the dorsolateral prefrontal cortex independent of sex. Finally, cortisol also modified the response to the electric shock (the UCS) by enhancing the activity of the anterior as well as the posterior cingulate. In sum, these findings demonstrate that in humans cortisol mostly influences prefrontal brain activation during fear conditioning and that these effects appear to be modulated by sex.

Last update from database: 04.06.25, 15:35 (UTC)

Erkunden

Team

Eintragsart

Sprache

Thema