Ihre Suche
Ergebnisse 3 Einträge
-
Fear conditioning is influenced by stress but opposing effects in males and females have often been reported. In a previous human functional magnetic resonance imaging (fMRI) study, we observed acute effects of the stress hormone cortisol on prefrontal structures. Men showed evidence for impaired fear conditioning after cortisol treatment, while the opposite pattern was found for women. In the current experiment, we tested whether similar sex-dependent effects would occur on the neural level if contingency awareness was prevented experimentally to investigate implicit learning processes. A differential fear conditioning experiment with transcutaneous electrical stimulation as unconditioned stimulus and geometric figures as conditioned stimuli (CS) was conducted. One figure was always paired (CS+), whereas the other (CS-) was never paired with the UCS. Thirty-nine (19 female) subjects participated in this fMRI study, receiving either placebo or 30 mg cortisol (hydrocortisone) before conditioning. Dependent variables were skin conductance responses (SCRs) and neural activity (BOLD signal). In line with prior findings in unaware participants, no differential learning could be observed for the SCRs. However, a sex x cortisol interaction was detected with a reduced mean response to the CS after cortisol treatment in men, while the opposite pattern was observed in women (enhanced mean SCR under cortisol). In the contrast CS+ minus CS-, neural activity showed a sex x cortisol interaction in the insula and further trends in the hippocampus and the thalamus. In these regions, cortisol reduced the CS+/CS- differentiation in men but enhanced it in women. In contrast to these sex specific effects, differential amygdala activation was found in the placebo group but not in the cortisol group, irrespective of sex. Further, differential neural activity in the amygdala and thalamus were positively correlated with the SCRs in the placebo group only. The present study in contingency unaware participants illustrates that cortisol has in some brain regions sex specific effects on neural correlates of emotional learning. These effects might translate into a different vulnerability of the two sexes for anxiety disorders.
-
INTRODUCTION: Learning processes like classical conditioning are involved in mediating sexual behavior. Yet, the neural bases underlying these processes have not been investigated so far. AIM: The aim of this study was to explore neural activations of classical conditioning of sexual arousal with respect to sex differences and contingency awareness. METHODS: In the acquisition phase, a geometric figure (CS+) was presented for 8 seconds and was followed by highly sexual arousing pictures (UCS), whereas another figure (CS-) predicted neutral pictures. Ratings and contingency awareness were assessed after the entire conditioning procedure. Forty subjects (20 females) were classified into one of four groups according to their sex and the development of contingency awareness (aware females, aware males, unaware females, and unaware males). MAIN OUTCOME MEASURES: Blood oxygen level dependent (BOLD) responses measured by functional magnetic resonance imaging (fMRI), skin conductance responses (SCRs), and subjective ratings. RESULTS: fMRI analysis showed two effects (awareness and sex) when comparing CS+ with CS-: (i) aware compared to unaware subjects showed enhanced differentiation (e.g., ventral striatum, orbitofrontal cortex, occipital cortex); and (ii) men showed increased activity compared to women in the amygdala, thalamus, and brainstem. CS+ and CS- ratings differed in aware subjects only. However, no conditioned SCRs occurred in any group. CONCLUSION: The increased activity in men is in line with theories postulating that men are generally more prone to conditioning of sexual arousal. Further, contingency awareness seems to be an important factor in appetitive learning processes, which facilitates conditioning processes.
-
The stress hormone cortisol is known to influence declarative memory and associative learning. In animals, stress has often been reported to have opposing effects on memory and learning in males and females. In humans, the effects of cortisol have mainly been studied at the behavioral level. The aim of the present experiment was to characterize the effects of a single cortisol dose (30 mg) on the hemodynamic correlates of fear conditioning. In a double-blind group comparison study subjects (17 females and 17 males) received 30 mg cortisol or placebo orally before participating in a discriminative fear conditioning paradigm. Results revealed that cortisol impaired electrodermal signs of learning (the first interval response) in males, while no conditioned SCRs emerged for the females independent of treatment. fMRI results showed that cortisol reduced activity for the CS+ > CS- comparison in the anterior cingulate, the lateral orbitofrontal cortex and the medial prefrontal cortex in males. Opposite findings (increase in these regions under cortisol) were detected in females. In addition, cortisol reduced the habituation in the CS+ > CS- contrast in the dorsolateral prefrontal cortex independent of sex. Finally, cortisol also modified the response to the electric shock (the UCS) by enhancing the activity of the anterior as well as the posterior cingulate. In sum, these findings demonstrate that in humans cortisol mostly influences prefrontal brain activation during fear conditioning and that these effects appear to be modulated by sex.
Erkunden
Team
- Vaitl (3)
Eintragsart
Sprache
- Englisch (3)
Thema
- Sex Characteristics
- Adolescent (1)
- Adult (2)
- Amygdala/physiology (1)
- Arousal/*physiology (1)
- Awareness (1)
- Awareness/physiology (1)
- Basal Ganglia/physiology (1)
- Brain Stem/physiology (1)
- Conditioning, Classical/physiology (1)
- Conditioning, Psychological/*drug effects (1)
- Conditioning, Psychological/physiology (1)
- Double-Blind Method (2)
- Electric Stimulation (1)
- Fear/*drug effects (1)
- Fear/*psychology (1)
- Female (3)
- Frontal Lobe/physiology (1)
- Galvanic Skin Response (1)
- Galvanic Skin Response/physiology (2)
- Gyrus Cinguli/physiology (1)
- Hemodynamics/physiology (2)
- Humans (3)
- Hydrocortisone/*pharmacology (1)
- Hydrocortisone/*physiology (1)
- Magnetic Resonance Imaging (3)
- Male (3)
- Occipital Lobe/physiology (1)
- Oxygen/blood (1)
- Photic Stimulation (2)
- Prefrontal Cortex/*physiology (1)
- Psychomotor Performance/physiology (1)
- Sexual Behavior/*physiology (1)
- Thalamus/physiology (1)
- Young Adult (2)