Ihre Suche
Ergebnisse 2 Einträge
-
Fear acquisition and extinction are crucial mechanisms in the etiology and maintenance of anxiety disorders. Moreover, they might play a pivotal role in conveying the influence of genetic and environmental factors on the development of a (more or less) stronger proneness for, or resilience against psychopathology. There are only few insights in the neurobiology of genetically and environmentally based individual differences in fear learning and extinction. In this functional magnetic resonance imaging study, 74 healthy subjects were investigated. These were invited according to 5-HTTLPR/rs25531 (S+ vs. L(A)L(A); triallelic classification) and TPH2 (G(-703)T) (T+ vs. T-) genotype. The aim was to investigate the influence of genetic factors and traumatic life events on skin conductance responses (SCRs) and neural responses (amygdala, insula, dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal cortex (vmPFC)) during acquisition and extinction learning in a differential fear conditioning paradigm. Fear acquisition was characterized by stronger late conditioned and unconditioned responses in the right insula in 5-HTTLPR S-allele carriers. During extinction traumatic life events were associated with reduced amygdala activation in S-allele carriers vs. non-carriers. Beyond that, T-allele carriers of the TPH2 (G(-703)T) polymorphism with a higher number of traumatic life events showed enhanced responsiveness in the amygdala during acquisition and in the vmPFC during extinction learning compared with non-carriers. Finally, a combined effect of the two polymorphisms with higher responses in S- and T-allele carriers was found in the dACC during extinction. The results indicate an increased expression of conditioned, but also unconditioned fear responses in the insula in 5-HTTLPR S-allele carriers. A combined effect of the two polymorphisms on dACC activation during extinction might be associated with prolonged fear expression. Gene-by-environment interactions in amygdala and vmPFC activation may reflect a neural endophenotype translating genetic and adverse environmental influences into vulnerability for or resilience against developing affective psychopathology.
-
BACKGROUND: Gene by environment (G×E) interaction between genetic variation in the promoter region of the serotonin transporter gene (serotonin transporter-linked polymorphic region [5-HTTLPR]) and stressful life events (SLEs) has been extensively studied in the context of depression. Recent findings suggest increased neural and endocrine stress sensitivity as a possible mechanism conveying elevated vulnerability to psychopathology. Furthermore, these G×E mediated alterations very likely reflect interrelated biological processes. METHODS: In the present functional magnetic resonance imaging study, amygdala reactivity to fearful stimuli was assessed in healthy male adults (n = 44), who were previously found to differ with regard to endocrine stress reactivity as a function of 5-HTTLPR × SLEs. Furthermore, functional connectivity between the amygdala and the hypothalamus was measured as a potential mechanism linking elevated neural and endocrine responses during stressful/threatening situations. The study sample was carefully preselected regarding 5-HTTLPR genotype and SLEs. RESULTS: We report significant G×E interaction on neural response patterns and functional amygdala-hypothalamus connectivity. Specifically, homozygous carriers of the 5-HTTLPR S' allele with a history of SLEs (S'S'/high SLEs group) displayed elevated bilateral amygdala activation in response to fearful faces. Within the same sample, a comparable G×E interaction effect has previously been demonstrated regarding increased cortisol reactivity, indicating a cross-validation of heightened biological stress sensitivity. Furthermore, S'S'/high SLEs subjects were characterized by an increased functional coupling between the right amygdala and the hypothalamus, thus indicating a potential link between neural and endocrine hyperreactivity. CONCLUSIONS: The present findings contribute to the ongoing debate on 5-HTTLPR × SLEs interaction and are discussed with respect to clinical implications.
Erkunden
Team
- Vaitl (2)
Eintragsart
Sprache
- Englisch (2)
Thema
- Brain Mapping/methods
- Adult (2)
- Alleles (1)
- Amygdala/*metabolism (1)
- Brain/pathology/physiology (1)
- Conditioning, Psychological/physiology (1)
- Environment (1)
- Extinction, Psychological/physiology (1)
- Facial Expression (1)
- *Fear (1)
- Fear (1)
- Female (1)
- *Gene-Environment Interaction (1)
- Genetic Predisposition to Disease (1)
- Genotype (1)
- Humans (2)
- Hydrocortisone/metabolism (1)
- Hypothalamus/*metabolism (1)
- Life Change Events (1)
- Magnetic Resonance Imaging/methods (2)
- Male (2)
- Models, Genetic (1)
- Neural Pathways/metabolism (1)
- Phenotype (1)
- *Polymorphism, Genetic (1)
- Polymorphism, Genetic/*genetics (1)
- Reference Values (1)
- Serotonin/*metabolism (1)
- Serotonin Plasma Membrane Transport Proteins/*genetics/metabolism (1)
- Skin/pathology (1)
- Stress, Psychological/*genetics/metabolism (1)
- Wounds and Injuries (1)