Ihre Suche

In authors or contributors
Thema

Ergebnisse 3 Einträge

  • An object moving towards an observer is subjectively perceived as longer in duration than the same object that is static or moving away. This "time dilation effect" has been shown for a number of stimuli that differ from standard events along different feature dimensions (e.g. color, size, and dynamics). We performed an event-related functional magnetic resonance imaging (fMRI) study, while subjects viewed a stream of five visual events, all of which were static and of identical duration except the fourth one, which was a deviant target consisting of either a looming or a receding disc. The duration of the target was systematically varied and participants judged whether the target was shorter or longer than all other events. A time dilation effect was observed only for looming targets. Relative to the static standards, the looming as well as the receding targets induced increased activation of the anterior insula and anterior cingulate cortices (the "core control network"). The decisive contrast between looming and receding targets representing the time dilation effect showed strong asymmetric activation and, specifically, activation of cortical midline structures (the "default network"). These results provide the first evidence that the illusion of temporal dilation is due to activation of areas that are important for cognitive control and subjective awareness. The involvement of midline structures in the temporal dilation illusion is interpreted as evidence that time perception is related to self-referential processing.

  • In the general concept of self-disturbances in schizophrenia and schizophrenia spectrum disorders, somatopsychic depersonalization (SPD) occupies a special place as it constitutes a syndrome that comprises feelings of detachment from one's own body and mental processes. However, apart from clinical descriptions, to date the pathophysiology of SPD is not fully understood due to the rareness of the syndrome and a lack of experimental studies. In a case study of one patient with schizotypal disorder, we applied a multimodal approach to understanding the SPD phenomena. The patient's clinical profile was identified as disruption of implicit bodily function, accompanied by depressive symptoms. On a neuropsychological level, the patient exhibited impairment in executive functioning, intact tactile perception and kinesthetic praxis. Behavioral tests revealed an altered sense of time but unimpaired self-agency. Furthermore, the patient exhibited a lack of empathy and he had autistic traits, although with a sufficient ability to verbalize his feelings. On the neurobiological level using an active and passive touch paradigm during functional magnetic resonance imaging (fMRI), we found a hyperconnectivity of the default-mode network and salience network and a hypoconnectivity of the central executive brain networks in the performance of the touch task as well as intact perceptual touch processing emerging from the direct comparisons of the touch conditions. Our data provide evidence for the important role of altered large-brain network functioning in SPD that corresponds to the specific behavioral and neurocognitive phenomena.

  • BACKGROUND: Cocaine use disorders (CUDs) have been associated with increased risk-taking behavior. Neuroimaging studies have suggested that altered activity in reward and decision-making circuitry may underlie cocaine user's heightened risk-taking. It remains unclear if this behavior is driven by greater reward salience, lack of appreciation of danger, or another deficit in risk-related processing. METHODS: Twenty-nine CUD participants and forty healthy comparison participants completed the Risky Gains Task during a functional magnetic resonance imaging scan. During the Risky Gains Task, participants choose between a safe option for a small, guaranteed monetary reward and risky options with larger rewards but also the chance to lose money. Frequency of risky choice overall and following a win versus a loss were compared. Neural activity during the decision and outcome phase were examined using linear mixed effects models. RESULTS: Although the groups did not differ in overall risk-taking frequency, the CUD group chose a risky option more often following a loss. Neuroimaging analyses revealed that the comparison group showed increasing activity in the bilateral ventral striatum as they chose higher-value, risky options, but the CUD group failed to show this increase. During the outcome phase, the CUD group showed a greater decrease in bilateral striatal activity relative to the comparison group when losing the large amount, and this response was correlated with risk-taking frequency after a loss. CONCLUSIONS: The brains of CUD individuals are hypersensitive to losses, leading to increased risk-taking behaviors, and this may help explain why these individuals take drugs despite aversive outcomes.

Last update from database: 04.06.25, 15:35 (UTC)