Ihre Suche

In authors or contributors

Ergebnisse 4 Einträge

  • BACKGROUND: Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain. RESULTS: Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. CONCLUSIONS: The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.

  • The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.

  • This study addresses the controversy over how motor maps are organized during action simulation by examining whether action simulation states, that is, motor imagery and action observation, run on either effector-specific and/or action-specific motor maps. Subjects had to observe or imagine three types of movements effected by the right hand or the right foot with different action goals. The functional magnetic resonance imaging results showed an action-specific organization within premotor and posterior parietal areas of both hemispheres during action simulation, especially during action observation. There were also less pronounced effector-specific activation sites during both simulation processes. It is concluded that the premotor and parietal areas contain multiple motor maps rather than a single, continuous map of the body. The forms of simulation (observation, imagery), the task contexts (movements related to an object, with usual/unusual effector), and the underlying reason for performing the simulation (rate your subjective success afterwards) lead to the specific use of different representational motor maps within both regions. In our experimental setting, action-specific maps are dominant especially, during action observation, whereas effector-specific maps are recruited to only a lesser degree.

  • The perception of action is influenced by the observer's familiarity with its movement. However, how does motor familiarity with own movement patterns modulate the visual perception of action effects? Cortical activation was examined with fMRI while 20 observers were watching videotaped point-light displays of markers on the shoulders, the right elbow, and wrist of an opposing table tennis player. The racket and ball were not displayed. Participants were asked to predict the invisible effect of the stroke, that is, the ball flight direction. Different table tennis models were used without the observers knowing and being informed in advance that some of the presented videos displayed their own movements from earlier training sessions. Prediction had to be made irrespective of the identity of the player represented by the four moving markers. Results showed that participants performed better when observing their "own" strokes. Using a region-of-interest approach, fMRI data showed that observing own videos was accompanied by stronger activation (compared to other videos) in the left angular gyrus of the inferior parietal lobe and the anterior rostral medial frontal cortex. Other videos elicited stronger activation than own videos in the left intraparietal sulcus and right supramarginal gyrus. We suggest that during action observation of motorically familiar movements, the compatibility between the observed action and the observers' motor representation is already coded in the parietal angular gyrus--in addition to the paracingulate gyrus. The activation in angular gyrus is presumably part of an action-specific effect retrieval that accompanies actor-specific prefrontal processing. The intraparietal sulcus seems to be sensitive to incongruence between observed kinematics and internal model representations, and this also influences processing in the supramarginal gyrus.

Last update from database: 04.06.25, 15:35 (UTC)