Ihre Suche

Sprache

Ergebnisse 357 Einträge

  • While the contingent negative variation (CNV) has been the subject of extensive research over the last fifty years, the maximum duration during which such cortical negativity can be maintained has, to the best of our knowledge, never been systematically explored. Participants were presented with the classic S1-S2 paradigm task, where a warning stimulus (S1) acts as a cue for the appearance of an imperative stimulus (S2). A fast motor response was required upon S2 arrival. Inter-stimulus intervals (ISIs) of 2.5, 5, 7.5 and 10 s duration were presented in blocked fashion. Data was analysed using both EEG referenced to linked mastoids and the current source density (CSD) technique, which maximizes the cortical origin of the measured voltage. Mean late CNV (lCNV) amplitude was found to be significantly higher for fast reaction time (RT) trials when CSD data was split according to the median into 'fast' and 'slow' RT halves. Post-hoc comparisons showed that this RT effect was particularly strong for the 10 s condition. This may be explained by the lack of an lCNV component and thus of cortical negativity prior to S2 in the 10 s condition. Our results suggest that intervals of a duration between 7.5 and 10 s represent the upper boundary during which the lCNV component can be elicited.

  • Our focus of attention naturally fluctuates between different sources of information even when we desire to focus on a single object. Focused attention (FA) meditation is associated with greater control over this process, yet the neuronal mechanisms underlying this ability are not entirely understood. Here, we hypothesize that the capacity of attention to transiently focus and swiftly change relates to the critical dynamics emerging when neuronal systems balance at a point of instability between order and disorder. In FA meditation, however, the ability to stay focused is trained, which may be associated with a more homogeneous brain state. To test this hypothesis, we applied analytical tools from criticality theory to EEG in meditation practitioners and meditation-naïve participants from two independent labs. We show that in practitioners-but not in controls-FA meditation strongly suppressed long-range temporal correlations (LRTC) of neuronal oscillations relative to eyes-closed rest with remarkable consistency across frequency bands and scalp locations. The ability to reduce LRTC during meditation increased after one year of additional training and was associated with the subjective experience of fully engaging one's attentional resources, also known as absorption. Sustained practice also affected normal waking brain dynamics as reflected in increased LRTC during an eyes-closed rest state, indicating that brain dynamics are altered beyond the meditative state. Taken together, our findings suggest that the framework of critical brain dynamics is promising for understanding neuronal mechanisms of meditative states and, specifically, we have identified a clear electrophysiological correlate of the FA meditation state.

  • Background: Mindfulness trainings are increasingly offered in workplace environments in order to improve health and productivity. Whilst promising, there is limited research on the effectiveness of mindfulness interventions in workplace settings. Objective: To examine the feasibility and effectiveness of a Workplace Mindfulness Training (WMT) in terms of burnout, psychological well-being, organizational and team climate, and performance. Methods: This is a preliminary field study in four companies. Self-report questionnaires were administered up to a month before, at start of, and right at the end of the WMT, resulting in a pre-intervention and an intervention period. There was no separate control group. A total of 425 participants completed the surveys on the different time points. Linear mixed model analyses were used to analyze the data. Results: When comparing the intervention period with the pre-intervention period, significantly greater improvements were found in measures of burnout (mean difference = 0.3, p < 0.001), perceived stress (mean difference = -0.2, p < 0.001), mindfulness [mean difference = 1.0 for the Freiburg Mindfulness Inventory (FMI) and 0.8 for the Mindfulness Attention Awareness Scale (MAAS), both p < 0.001], and well-being (mean difference = 0.4, p < 0.001). Additionally, greater increases in team climate, organizational climate and personal performance were reported during the intervention compared to the pre-intervention period with largest improvements in team cooperation (mean difference = 0.3, p < 0.001), productivity (mean difference = 0.5, p < 0.001), and stress (mean difference = -0.4, p < 0.001). Effect sizes were large for mindfulness (d > 0.8), moderate for well-being, burnout and perceived stress (d = 0.5-0.8), and ranged from low to moderate for organizational and team climate and personal performance (d = 0.2-0.8). Conclusion: These preliminary data suggest that compared to the pre-intervention period, the intervention period was associated with greater reductions in burnout and perceived stress, improvements in mindfulness, well-being, and increases in team and organizational climate and personal performance. Due to design limitations, no conclusions can be drawn on the extent to which the WMT or non-specific factors such as time have contributed to the findings. Further studies, preferably using randomized controlled designs with longer follow up periods are needed to evaluate whether the associations found can be attributed to the WMT and whether these sustain after the training.

  • AIM: The present study utilizes perceptual hysteresis effects to compare the ambiguity of Mona Lisa's emotional face expression (high-level ambiguity) and of geometric cube stimuli (low-level ambiguity). METHODS: In two experiments we presented series of nine Mona Lisa variants and nine cube variants. Stimulus ambiguity was manipulated by changing Mona Lisa's mouth curvature (Exp. 1) and the cubes' back-layer luminance (Exp. 2). Each experiment consisted of three conditions, two with opposite stimulus presentation sequences with increasing and decreasing degrees of ambiguity, respectively, and a third condition with a random presentation sequence. Participants indicated happy or sad face percepts (Exp. 1) and alternative 3D cube percepts (Exp. 2) by key presses. We studied the influences of a priori perceptual biases (long-term memory) and presentation order (short-term memory) on perception. RESULTS: Perception followed sigmoidal functions of the stimulus ambiguity morphing parameters. The morphing parameter for the functions' inflection points depended strongly on stimulus presentation order with similar effect sizes but different signs for the two stimulus types (positive hysteresis / priming for the cubes; negative hysteresis / adaptation for Mona Lisa). In the random conditions, the inflection points were located in the middle between those from the two directional conditions for the Mona Lisa stimuli. For the cube stimuli, they were superimposed on one sigmoidal function for the ordered condition. DISCUSSION: The hysteresis effects reflect the influence of short-term memory during the perceptual disambiguation of ambiguous sensory information. The effects for the two stimulus types are of similar size, explaining up to 34% of the perceptual variance introduced by the paradigm. We explain the qualitative difference between positive and negative hysteresis with adaptation for Mona Lisa and with priming for the cubes. In addition, the hysteresis paradigm allows a quantitative determination of the impact of adaptation and priming during the resolution of perceptual ambiguities. The asymmetric shifts of inflection points in the case of the cube stimuli is likely due to an a priori perceptual bias, reflecting an influence of long-term memory. Whether corresponding influences also exist for the Mona Lisa variants is so far unclear.

  • Goal: We aimed to identify electroencephalographic (EEG) signal fluctuations within independent components (ICs) that correlate to spontaneous blood oxygenation level dependent (BOLD) activity in regions of the default mode network (DMN) during eyes-closed resting state. Methods: We analyzed simultaneously acquired EEG and functional magnetic resonance imaging (fMRI) eyes-closed resting state data in a convenience sample of 30 participants. IC analysis (ICA) was used to decompose the EEG time-series and common ICs were identified using data-driven IC clustering across subjects. The IC time courses were filtered into seven frequency bands, convolved with a hemeodynamic response function (HRF) and used to model spontaneous fMRI signal fluctuations across the brain. In parallel, group ICA analysis was used to decompose the fMRI signal into ICs from which the DMN was identified. Frequency and IC cluster associated hemeodynamic correlation maps obtained from the regression analysis were spatially correlated with the DMN. To investigate the reliability of our findings, the analyses were repeated with data collected from the same subjects 1 year later. Results: Our results indicate a relationship between power fluctuations in the delta, theta, beta and gamma frequency range and the DMN in different EEG ICs in our sample as shown by small to moderate spatial correlations at the first measurement (0.234 < |r| < 0.346, p < 0.0001). Furthermore, activity within an EEG component commonly identified as eye movements correlates with BOLD activity within regions of the DMN. In addition, we demonstrate that correlations between EEG ICs and the BOLD signal during rest are in part stable across time. Discussion: We show that ICA source separated EEG signals can be used to investigate electrophysiological correlates of the DMN. The relationship between the eye movement component and the DMN points to a behavioral association between DMN activity and the level of eye movement or the presence of neuronal activity in this component. Previous findings of an association between frontal midline theta activity and the DMN were replicated.

  • Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German - Japanese word pairs in an initial learning task and a different set of German - Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min) after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference. Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners. Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules.

  • Research on meditation is advancing, but few studies about the motivations of meditators exist. Additionally, many forms and traditions of meditation have yet to be investigated. This study addresses both of these issues by presenting an overview of different forms of motivations found in contemporary Anthroposophic meditation practice. 30 Anthroposophic meditators were interviewed about their meditation experiences. The interviews were examined using thematic analysis. 14 data-driven themes were extracted and organized within a framework consisting of three superordinate theory-driven forms of motivation: External, internal and service. A developmental trajectory running from external and internal to service motivations is indicated. This approach improves upon a scheme developed by Shapiro by including additional types of motivations and being able to differentiate between forms of motivations that are fundamentally different: Self-related (heteronomous and autonomous) motivations and other-related motivations.

  • The Necker-Zeno model of bistable perception provides a formal relation between the average duration of meta-stable percepts (dwell times T) of ambiguous figures and two other basic time scales (t(0), ΔT) underlying cognitive processing. The model predicts that dwell times T covary with t(0), ΔT or both. We tested this prediction by exploiting that observers, in particular experienced meditators, can volitionally control dwell times T. Meditators and non-meditators observed bistable Necker cubes either passively or tried to hold their current percept. The latencies of a centro-parietal event-related potential (CPP) were recorded as a physiological correlate of t(0). Dwell times T and the CPP latencies, correlated with t(0), differed between conditions and observer groups, while ΔT remained constant in the range predicted by the model. The covariation of CPP latencies and dwell times, as well as their quadratic functional dependence extends previous psychophysical confirmation of the Necker-Zeno model to psychophysiological measures.

  • Greater vibrotactile sensitivity has been related to better erectile function in men, and vibrotactile and pressure tactile sensitivity have been related to better sexual function in women. Our previous study found that, for both sexes, greater recalled body awareness during last sexual relation correlated with greater recalled desire and arousal. Using the same sample of that study (68 women and 48 men, recruited in the Lisbon area, Portugal), we tested if greater recalled body awareness during last sexual relation correlates with tactile pressure sensitivity, as assessed by von Frey microfilaments. In simple and partial correlations controlling for social desirability and smoking before last sex, the hypothesis was confirmed for women, but not for men. Greater tactile sensitivity might enhance sexual arousal through greater awareness of the body during sex, and/or more frequent and pleasant body sensations during sex might lead to greater tactile sensitivity in nonsexual situations. Pressure sensitivity might be more closely linked to sexual arousal in women than in men.

  • The misinformation effect refers to memory impairment that arises after exposure to misleading information (Loftus, 2005, p. 361). The present study focuses on the peripheral psychophysiology of false memories induced in a misleading information paradigm. On the basis of Sokolov's orienting reflex and studies concerning the Concealed Information Test (CIT, Lykken, 1959), the main hypothesis assumes differences between true and false memories in terms of the accompanying autonomic measures. It also is assumed that a cued recall of original information preceding the recollection phase reduces misinformation effects. Seventy-five participants watched a video that included nine randomized details. After a ten-minute retention phase, the subjects read a narrative text. Six out of the nine details were replaced by misleading details. Following this, the participants completed a cued recall task for three of the original items. In a subsequent CIT with truthful answering electrodermal responses, phasic heart rate, respiration, and response behavior were measured. Finally, the level of confidence and source monitoring were assessed. The misinformation effect was replicated with newly developed materials in three recollection tasks. Cued recall had no influence on the misinformation effect. Autonomic measures did not differ between true and false memories in the CIT. Electrodermal responses reflected the subjective importance the participants attributed to details in the source monitoring task. Therefore, electrodermal responses are interpreted as a correlate of subjective remembering in a misinformation paradigm.

  • The worldwide fascination of da Vinci's Mona Lisa has been dedicated to the emotional ambiguity of her face expression. In the present study we manipulated Mona Lisa's mouth curvature as one potential source of ambiguity and studied how a range of happier and sadder face variants influences perception. In two experimental conditions we presented different stimulus ranges with different step sizes between stimuli along the happy-sad axis of emotional face expressions. Stimuli were presented in random order and participants indicated the perceived emotional face expression (first task) and the confidence of their response (second task). The probability of responding 'happy' to the original Mona Lisa was close to 100%. Furthermore, in both conditions the perceived happiness of Mona Lisa variants described sigmoidal functions of the mouth curvature. Participants' confidence was weakest around the sigmoidal inflection points. Remarkably, the sigmoidal functions, as well as confidence values and reaction times, differed significantly between experimental conditions. Finally, participants responded generally faster to happy than to sad faces. Overall, the original Mona Lisa seems to be less ambiguous than expected. However, perception of and reaction to the emotional face content is relative and strongly depends on the used stimulus range.

  • BACKGROUND: Cocaine use disorders (CUDs) have been associated with increased risk-taking behavior. Neuroimaging studies have suggested that altered activity in reward and decision-making circuitry may underlie cocaine user's heightened risk-taking. It remains unclear if this behavior is driven by greater reward salience, lack of appreciation of danger, or another deficit in risk-related processing. METHODS: Twenty-nine CUD participants and forty healthy comparison participants completed the Risky Gains Task during a functional magnetic resonance imaging scan. During the Risky Gains Task, participants choose between a safe option for a small, guaranteed monetary reward and risky options with larger rewards but also the chance to lose money. Frequency of risky choice overall and following a win versus a loss were compared. Neural activity during the decision and outcome phase were examined using linear mixed effects models. RESULTS: Although the groups did not differ in overall risk-taking frequency, the CUD group chose a risky option more often following a loss. Neuroimaging analyses revealed that the comparison group showed increasing activity in the bilateral ventral striatum as they chose higher-value, risky options, but the CUD group failed to show this increase. During the outcome phase, the CUD group showed a greater decrease in bilateral striatal activity relative to the comparison group when losing the large amount, and this response was correlated with risk-taking frequency after a loss. CONCLUSIONS: The brains of CUD individuals are hypersensitive to losses, leading to increased risk-taking behaviors, and this may help explain why these individuals take drugs despite aversive outcomes.

  • BACKGROUND: During observation of the Necker cube perception becomes unstable and alternates repeatedly between a from-above-perspective ("fap") and a from-below-perspective ("fbp") interpretation. Both interpretations are physically equally plausible, however, observers usually show an a priori top-down bias in favor of the fap interpretation. Patients with Autism spectrum disorder are known to show an altered pattern of perception with a focus on sensory details. In the present study we tested whether this altered perceptual processing affects their reversal dynamics and reduces the perceptual bias during Necker cube observation. METHODS: 19 participants with Asperger syndrome and 16 healthy controls observed a Necker cube stimulus continuously for 5 minutes and indicated perceptual reversals by key press. We compared reversal rates (number of reversals per minute) and the distributions of dwell times for the two interpretations between observer groups. RESULTS: Asperger participants showed less perceptual reversal than controls. Six Asperger participants did not perceive any reversal at all, whereas all observers from the control group perceived at least five reversals within the five minutes observation time. Further, control participants showed the typical perceptual bias with significant longer median dwell times for the fap compared to the fbp interpretation. No such perceptual bias was found in the Asperger group. DISCUSSION: The perceptual system weights the incomplete and ambiguous sensory input with memorized concepts in order to construct stable and reliable percepts. In the case of the Necker cube stimulus, two perceptual interpretations are equally compatible with the sensory information and internal fluctuations may cause perceptual alternations between them-with a slightly larger probability value for the fap interpretation (perceptual bias). Smaller reversal rates in Asperger observers may result from the dominance of bottom-up sensory input over endogenous top-down factors. The latter may also explain the absence of a fap bias.

  • Environmental information available to our senses is incomplete and to varying degrees ambiguous. It has to be disambiguated in order to construct stable and reliable percepts. Ambiguous figures are artificial examples where perception is maximally unstable and alternates between possible interpretations. Tiny low-level changes can disambiguate an ambiguous figure and thus stabilize percepts. The present study compares ERPs evoked by ambiguous stimuli and disambiguated stimulus variants across three visual categories: geometry (Necker cube), motion (stroboscopic alternative motion stimulus, SAM) and semantics (Boring's old/young woman). We found that (a) disambiguated stimulus variants cause stable percepts and evoke two huge positive ERP excursions (Cohen's effect sizes 1-2), (b) the amplitudes of these ERP effects are inversely related to the degree of stimulus ambiguity, and (c) this pattern of results is consistent across all three tested visual categories. This generality across visual categories points to mechanisms at a very abstract (cognitive) level of processing. We discuss our results in the context of a high-level Bayesian inference unit that evaluates the reliability of perceptual processing results, given a priori incomplete, ambiguous sensory information. The ERP components may reflect the outcome of this reliability estimation.

  • The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation.

  • BACKGROUND: Although motor symptoms predominate in essential tremor, increasing evidence indicates additional cognitive deficits. According to the pivotal role of cognitive functioning for temporal information processing and acknowledging the relevance of temporal information processing for movement coordination, we investigated whether essential tremor patients exhibit time reproduction deficits. METHODS: A total of 24 essential tremor patients and 24 healthy controls performed sub- and suprasecond visual duration reproduction tasks of 500 to 900 milliseconds and 1.6 to 2.4 seconds, respectively. To differentiate deficient time processing from motor or other cognitive dysfunctions, the average temporal reproduction errors were correlated with tremor severity, immediate and delayed word-list recall performance, and verbal fluency. RESULTS: Essential tremor patients significantly underreproduced sub- and suprasecond time intervals longer than 800 milliseconds. Moreover, time compression correlated significantly with semantic verbal fluency and word-list retrieval performance, but not with tremor severity. CONCLUSION: Data suggest impaired temporal processing in essential tremor, corroborating evidence for specific cognitive deficits. © 2016 International Parkinson and Movement Disorder Society.

Last update from database: 11.08.25, 05:41 (UTC)

Erkunden

Sprache

Thema