Ihre Suche

Sprache
Thema

Ergebnisse 6 Einträge

  • The role of the heart in the experience of time has been long theorized but empirical evidence is scarce. Here, we examined the interaction between fine-grained cardiac dynamics and the momentary experience of subsecond intervals. Participants performed a temporal bisection task for brief tones (80-188 ms) synchronized with the heart. We developed a cardiac Drift-Diffusion Model (cDDM) that embedded contemporaneous heart rate dynamics into the temporal decision model. Results revealed the existence of temporal wrinkles-dilation or contraction of short intervals-in synchrony with cardiac dynamics. A lower prestimulus heart rate was associated with an initial bias in encoding the millisecond-level stimulus duration as longer, consistent with facilitation of sensory intake. Concurrently, a higher prestimulus heart rate aided more consistent and faster temporal judgments through more efficient evidence accumulation. Additionally, a higher speed of poststimulus cardiac deceleration, a bodily marker of attention, was associated with a greater accumulation of sensory temporal evidence in the cDDM. These findings suggest a unique role of cardiac dynamics in the momentary experience of time. Our cDDM framework opens a new methodological avenue for investigating the role of the heart in time perception and perceptual judgment.

  • A Ganzfeld is a homogenized visual and auditory perceptual field which can induce altered states of consciousness (ASC; Metzger, 1929; Schmidt & Prein, 2019). Using a balanced intrasubject design, we compared participants' experience during two differently colored (red, green) 25-min Ganzfeld sessions with brown noise as acoustic stimulation. Participants were exposed to the colored visual field through commercially available goggles and to brown noise over headphones. We selected 67 participants with some prior meditation experience to increase the probability that they would engage meaningfully with this specifically restricted stimulus situation. We tested the functional components of the standard cognitive model of time perception (Zakay & Block, 1997) in a path analysis for direct (red vs. green light) and indirect effects (arousal, attention) on subjective duration and perceived passage of time. Subjective arousal and valence states were measured using the Self-Assessment Manikin (SAM). The amount of attention directed to time and the perceived passage of time were rated with standard visual analog scales (VAS). Participants also estimated the duration of each Ganzfeld exposure. The session with the red visual field lasted significantly longer than did the green session (μ(red) = 23.1 min; μ(green) = 19.8 min). After the green session, participants rated their arousal level to have significantly decreased; after the red session, individuals on average felt emotionally less positive. Multiple path analyses revealed that the effect of color on estimated duration is completely mediated through higher arousal levels during the red Ganzfeld session. In turn, the higher arousal level generates a longer subjective estimate of duration. For induction of relaxation in studies probing altered states of consciousness employing the Ganzfeld technique, we recommend using the green light.

  • The flow state is defined by intense involvement in an activity with high degrees of concentration and focused attention accompanied by a sense of pleasure. Video games are effective tools for inducing flow, and keeping players in this state is considered to be one of the central goals of game design. Many studies have focused on the underlying physiological and neural mechanisms of flow. Results are inconsistent when describing a unified mechanism underlying this mental state. This paper provides a comprehensive review of the physiological and neural correlates of flow and explains the relationship between the reported physiological and neural markers of the flow experience. Despite the heterogeneous results, it seems possible to establish associations between reported markers and the cognitive and experiential aspects of flow, particularly regarding arousal, attention control, reward processing, automaticity, and self-referential processing.

  • Executive working memory operations are related to prefrontal regions in the healthy brain. Moreover, neuroimaging data provide evidence for a functional dissociation of ventrolateral and dorsolateral prefrontal cortex. Most authors either suggest a modality-specific or a function-specific prefrontal cortex organization. In the present study we particularly aimed at the identification of different prefrontal cerebral areas that are involved in executive inhibitory processes during spatial working memory encoding. In an fMRI study (functional magnetic resonance imaging) we examined the neural correlates of spatial working memory processing by varying the amount of executive demands of the task. Twenty healthy volunteers performed the Corsi Block-Tapping test (CBT) during fMRI. The CBT requires the storage and reproduction of spatial target sequences. In a second condition, we presented an adapted version of the Block-Suppression-Test (BST). The BST is based on the original CBT but additionally requires the active suppression of visual distraction within the target sequences. In comparison to the CBT performance, particularly the left dorsolateral prefrontal cortex (BA 9) showed more activity during the BST condition. Our results show that the left dorsolateral prefrontal cortex plays a crucial role for executive controlled inhibition of spatial distraction. Furthermore, our findings are in line with the processing model of a functional dorsolateral-ventrolateral prefrontal cortex organization.

  • Latent inhibition (LI) is an important model for understanding cognitive deficits in schizophrenia. Disruption of LI is thought to result from an inability to ignore irrelevant stimuli. The study investigated LI in schizophrenic patients by using Pavlovian conditioning of electrodermal responses in a complete within-subject design. Thirty-two schizophrenic patients (16 acute, unmedicated and 16 medicated patients) and 16 healthy control subjects (matched with respect to age and gender) participated in the study. The experiment consisted of two stages: preexposure and conditioning. During preexposure two visual stimuli were presented. one of which served as the to-be-conditioned stimulus (CSp + ) and the other one was the not-to-be-conditioned stimulus (CSp - ) during the following conditioning ( = acquisition). During acquisition, two novel visual stimuli(CSn + and CSn - ) were introduced. A reaction time task was used as the unconditioned stimulus (US). LI was defined as the difference in response differentiation observed between preexposed and non-preexposed sets of CS + and CS - . During preexposure, the schizophrenic patients did not differ in electrodermal responding from the control subjects, neither concerning the extent of orienting nor the course of habituation. The exposure to novel stimuli at the beginning of the acquisition elicited reduced orienting responses in unmedicated patients compared to medicated patients and control subjects. LI was observed in medicated schizophrenic patients and healthy controls, but not in acute unmedicated patients. Furthermore LI was found to be correlated with the duration of illness: it was attenuated in patients who had suffered their first psychotic episode.

  • Nonaversive unconditional stimuli (USs) are seldom used in human classic conditioning of autonomic responses. One major objection to their use is that they produce deficits in electrodermal (ED) second- and third-interval response conditioning. However, a nonaversive reaction time (RT) task that includes feedback of success has been shown to be an effective US while avoiding this disadvantage (Lipp and Vaitl 1988). The present study compared this new RT task (RT-new) with a traditional RT task (RT-old) and with a standard aversive US (shock) in differential classic conditioning of ED, heart rate (HR), and digital pulse volume (DPV) responses. Eight-second-delay differential conditioning was applied in three groups of 12 subjects each. Simple geometric features (square, cross) displayed on a television screen served as conditional stimuli (CS+ and CS-). In acquisition, there were no statistically significant differences among the groups; differential conditioning did occur in HR, first- and second-interval ED responses, and first-interval DPV responses. Separate analyses within each group, however, revealed that there was no second-interval ED conditioning in the RT-old group. During extinction, neither DPV nor second-interval ED conditioning could be obtained, whereas HR and first-interval ED conditioning occurred in each group. In third-interval omission ED responses, RT-old and shock groups exhibited extinction, while response differentiation was maintained in the RT-new group throughout extinction. The RT task including feedback proved to be as reliable a US as a standard aversive US, whereas application of a traditional RT task again yielded some weaknesses in second-interval ED conditioning.

Last update from database: 04.06.25, 15:35 (UTC)