Ihre Suche

Sprache

Ergebnisse 3 Einträge

  • The Necker-Zeno model of bistable perception provides a formal relation between the average duration of meta-stable percepts (dwell times T) of ambiguous figures and two other basic time scales (t(0), ΔT) underlying cognitive processing. The model predicts that dwell times T covary with t(0), ΔT or both. We tested this prediction by exploiting that observers, in particular experienced meditators, can volitionally control dwell times T. Meditators and non-meditators observed bistable Necker cubes either passively or tried to hold their current percept. The latencies of a centro-parietal event-related potential (CPP) were recorded as a physiological correlate of t(0). Dwell times T and the CPP latencies, correlated with t(0), differed between conditions and observer groups, while ΔT remained constant in the range predicted by the model. The covariation of CPP latencies and dwell times, as well as their quadratic functional dependence extends previous psychophysical confirmation of the Necker-Zeno model to psychophysiological measures.

  • Perception of ambiguous figures is unstable and alternates repeatedly between possible interpretations. Some approaches to explaining this phenomenon have, so far, assumed low-level bottom-up mechanisms like adaptation and mutual inhibition of underlying neural assemblies. In contrast, less precise top-down approaches assume high-level attentional control mechanisms generalised across sensory modalities. In the current work we focused on specific aspects of the top-down approach. In a first study we used dwell times (periods of transiently stable percepts) and the parameters of dwell time distribution functions to compare the dynamics of perceptual alternations between visual (Necker cube) and auditory ambiguity (verbal transformation effect). In a second study we compared the endogenous alternation dynamics of the Necker cube with parameters from two attention tasks with different regimes of temporal dynamics. The first attention task (d2) is characterised by endogenous self-paced dynamics, similar to the dynamics underlying perceptual alternations of ambiguous figures, and we found clear correlations between dwell time parameters (Necker cube) and processing speed (d2 task). The temporal dynamics of the second (go/no-go) attention task, in contrast, are exogenously governed by the stimulus protocol, and we found no statistically significant correlation with the Necker cube data. Our results indicate that both perceptual instability and higher-level attentional tasks are linked to endogenous brain dynamics on a global coordinating level beyond sensory modalities.

  • Event-related functional magnetic resonance imaging was applied to identify cortical areas involved in maintaining target information in working memory used for an upcoming grasping action. Participants had to grasp with their thumb and index finger of the dominant right hand three-dimensional objects of different size and orientation. Reaching-to-grasp movements were performed without visual feedback either immediately after object presentation or after a variable delay of 2-12 s. The right inferior parietal cortex demonstrated sustained neural activity throughout the delay, which overlapped with activity observed during encoding of the grasp target. Immediate and delayed grasping activated similar motor-related brain areas and showed no differential activity. The results suggest that the right inferior parietal cortex plays an important functional role in working memory maintenance of grasp-related information. Moreover, our findings confirm the assumption that brain areas engaged in maintaining information are also involved in encoding the same information, and thus extend previous findings on working memory function of the posterior parietal cortex in saccadic behavior to reach-to-grasp movements.

Last update from database: 04.06.25, 15:35 (UTC)