Ihre Suche
Ergebnisse 2 Einträge
-
Effortless learning during sleep is everybody's dream. Several studies found that presenting odor cues during learning and selectively during slow wave sleep increases learning success. The current study extends previous research in three aspects to test for optimization and practical applicability of this cueing effect: We (1) performed a field study of vocabulary-learning in a regular school setting, (2) stimulated with odor cues during the whole night without sleep monitoring, and (3) applied the odor additionally as retrieval cue in a subsequent test. We found an odor cueing effect with comparable effect sizes (d between 0.6 and 1.2) as studies with sleep monitoring and selective cueing. Further, we observed some (non-significant) indication for a further performance benefit with additional cueing during the recall test. Our results replicate previous findings and provide important extensions: First, the odor effect also works outside the lab. Second, continuous cueing at night produces similar effect sizes as a study with selective cueing in specific sleep stages. Whether odor cueing during memory recall further increases memory performance hast to be shown in future studies. Overall, our results extend the knowledge on odor cueing effects and provide a realistic practical perspective on it.
-
Temporally distributed ("spaced") learning can be twice as efficient as massed learning. This "spacing effect" occurs with a broad spectrum of learning materials, with humans of different ages, with non-human vertebrates and also invertebrates. This indicates, that very basic learning mechanisms are at work ("generality"). Although most studies so far focused on very narrow spacing interval ranges, there is some evidence for a non-monotonic behavior of this "spacing effect" ("nonlinearity") with optimal spacing intervals at different time scales. In the current study we focused both the nonlinearity aspect by using a broad range of spacing intervals and the generality aspect by using very different learning/practice domains: Participants learned German-Japanese word pairs and performed visual acuity tests. For each of six groups we used a different spacing interval between learning/practice units from 7 min to 24 h in logarithmic steps. Memory retention was studied in three consecutive final tests, one, seven and 28 days after the final learning unit. For both the vocabulary learning and visual acuity performance we found a highly significant effect of the factor spacing interval on the final test performance. In the 12 h-spacing-group about 85% of the learned words stayed in memory and nearly all of the visual acuity gain was preserved. In the 24 h-spacing-group, in contrast, only about 33% of the learned words were retained and the visual acuity gain dropped to zero. The very similar patterns of results from the two very different learning/practice domains point to similar underlying mechanisms. Further, our results indicate spacing in the range of 12 hours as optimal. A second peak may be around a spacing interval of 20 min but here the data are less clear. We discuss relations between our results and basic learning at the neuronal level.
Erkunden
Team
Eintragsart
Sprache
- Englisch (2)
Thema
- Learning/*physiology
- Adult (1)
- Analysis of Variance (1)
- Association Learning/physiology (1)
- Child (1)
- Cues (1)
- Female (2)
- Humans (2)
- Language (1)
- Male (2)
- Memory Consolidation/physiology (1)
- Memory, Long-Term/physiology (1)
- Memory/physiology (1)
- Mental Recall/physiology (1)
- Odorants (1)
- Reaction Time (1)
- Retention, Psychology (1)
- Sleep/*physiology (1)
- Smell/*physiology (1)
- Vocabulary (1)
- Young Adult (1)