Ihre Suche

Ergebnisse 5 Einträge

  • The Necker-Zeno model of bistable perception provides a formal relation between the average duration of meta-stable percepts (dwell times T) of ambiguous figures and two other basic time scales (t(0), ΔT) underlying cognitive processing. The model predicts that dwell times T covary with t(0), ΔT or both. We tested this prediction by exploiting that observers, in particular experienced meditators, can volitionally control dwell times T. Meditators and non-meditators observed bistable Necker cubes either passively or tried to hold their current percept. The latencies of a centro-parietal event-related potential (CPP) were recorded as a physiological correlate of t(0). Dwell times T and the CPP latencies, correlated with t(0), differed between conditions and observer groups, while ΔT remained constant in the range predicted by the model. The covariation of CPP latencies and dwell times, as well as their quadratic functional dependence extends previous psychophysical confirmation of the Necker-Zeno model to psychophysiological measures.

  • BACKGROUND: During observation of the Necker cube perception becomes unstable and alternates repeatedly between a from-above-perspective ("fap") and a from-below-perspective ("fbp") interpretation. Both interpretations are physically equally plausible, however, observers usually show an a priori top-down bias in favor of the fap interpretation. Patients with Autism spectrum disorder are known to show an altered pattern of perception with a focus on sensory details. In the present study we tested whether this altered perceptual processing affects their reversal dynamics and reduces the perceptual bias during Necker cube observation. METHODS: 19 participants with Asperger syndrome and 16 healthy controls observed a Necker cube stimulus continuously for 5 minutes and indicated perceptual reversals by key press. We compared reversal rates (number of reversals per minute) and the distributions of dwell times for the two interpretations between observer groups. RESULTS: Asperger participants showed less perceptual reversal than controls. Six Asperger participants did not perceive any reversal at all, whereas all observers from the control group perceived at least five reversals within the five minutes observation time. Further, control participants showed the typical perceptual bias with significant longer median dwell times for the fap compared to the fbp interpretation. No such perceptual bias was found in the Asperger group. DISCUSSION: The perceptual system weights the incomplete and ambiguous sensory input with memorized concepts in order to construct stable and reliable percepts. In the case of the Necker cube stimulus, two perceptual interpretations are equally compatible with the sensory information and internal fluctuations may cause perceptual alternations between them-with a slightly larger probability value for the fap interpretation (perceptual bias). Smaller reversal rates in Asperger observers may result from the dominance of bottom-up sensory input over endogenous top-down factors. The latter may also explain the absence of a fap bias.

  • Patients with schizophrenia have often been described as insensitive to nociceptive signals, but objective evidence is sparse. We address this question by combining subjective behavioral and objective neurochemical and neurophysiological measures. The present study involved 21 stabilized and mildly symptomatic patients with schizophrenia and 21 control subjects. We applied electrical stimulations below the pain threshold and assessed sensations of pain and unpleasantness with rating scales, and Somatosensory Evoked Potentials (SEPs/EEG). We also measured attention, two neurochemical stress indices (ACTH/cortisol), and subjective VEPs/EEG responses to visual emotional stimuli. Our results revealed that, subjectively, patients' evaluations do not differ from controls. However, the amplitude of EEG evoked potentials was greater in patients than controls as early as 50 ms after electrical stimulations and beyond one second after visual processing of emotional pictures. Such responses could not be linked to the stress induced by the stimulations, since stress hormone levels were stable. Nor was there a difference between patients and controls in respect of attention performance and tactile sensitivity. Taken together, all indices measured in patients in our study were either heightened or equivalent relative to healthy volunteers.

  • BACKGROUND: Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. METHODS: In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. RESULTS: We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. DISCUSSION: The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.

  • PURPOSE: We sought brain activity that predicts visual consciousness. METHODS: We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. RESULTS: We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. CONCLUSION: We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness.

Last update from database: 04.06.25, 15:35 (UTC)