Ihre Suche
Ergebnisse 13 Einträge
-
During visual imagination, a perceptual representation is activated in the absence of sensory input. This is sometimes described as seeing with the mind's eye. A number of physiological studies indicate that the brain uses more or less the same neural resources for visual perception of sensory information and visual imagination. The intensity of visual imagination is typically assessed with questionnaires, while more objective measures are missing. Aim of the present study was, to test a new experimental paradigm that may allow to objectively quantify imagination. For this, we used priming and adaptation effects during observation of ambiguous figures. Our perception of an ambiguous stimulus is unstable and alternates spontaneously between two possible interpretations. If we first observe an unambiguous stimulus variant (the conditioning stimulus), the subsequently presented ambiguous stimulus can either be perceived in the same way as the test stimulus (priming effect) or in the opposite way (adaptation effect) as a function of the conditioning time. We tested for these conditioning effects (priming and adaptation) using an ambiguous Necker Cube and an ambiguous Letter /Number stimulus as test stimuli and unambiguous variants thereof as conditioning stimuli. In a second experimental condition, we tested whether the previous imagination of an unambiguous conditioning stimulus variant - instead of its observation - can have similar conditioning effects on the subsequent test stimulus. We found no systematic conditioning effect on the group level, neither for the two stimulus types (Necker Cube stimuli and Letter /Number stimuli) nor for the two conditions (Real and Imaginary). However, significant correlations between effects of Real and Imaginary Condition were observed for both stimulus types. The absence of conditioning effects at the group level may be explained by using only one conditioning time, which may fit with individual priming and adaptation constants of some of our participants but not of others. Our strong correlation results indicate that observers with clear conditioning effects have about the same type (priming or adaptation) and intensity of imaginary conditioning effects. As a consequence, not only past perceptual experiences but also past imaginations can influence our current percepts. This is further confirmation that the mechanisms underlying perception and imagination are similar. Our post-hoc qualitative observations from three self-defined aphantasic observers indicate that our paradigm may be a promising objective measure to identify aphantasia.
-
Current theories about visual perception assume that our perceptual system weights the a priori incomplete, noisy and ambiguous sensory information with previous, memorized perceptual experiences in order to construct stable and reliable percepts. These theories are supported by numerous experimental findings. Theories about precognition have an opposite point of view. They assume that information from the future can have influence on perception, thoughts, and behavior. Several experimental studies provide evidence for precognition effects, other studies found no such effects. One problem may be that the vast majority of precognition paradigms did not systematically control for potential effects from the perceptual history. In the present study, we presented ambiguous Necker cube stimuli and disambiguated cube variants and systematically tested in two separate experiments whether perception of a currently observed ambiguous Necker cube stimulus can be influenced by a disambiguated cube variant, presented in the immediate perceptual past (perceptual history effects) and/or in the immediate perceptual future (precognition effects). We found perceptual history effects, which partly depended on the length of the perceptual history trace but were independent of the perceptual future. Results from some individual participants suggest on the first glance a precognition pattern, but results from our second experiment make a perceptual history explanation more probable. On the group level, no precognition effects were statistically indicated. The perceptual history effects found in the present study are in confirmation with related studies from the literature. The precognition analysis revealed some interesting individual patterns, which however did not allow for general conclusions. Overall, the present study demonstrates that any future experiment about sensory or extrasensory perception urgently needs to control for potential perceptual history effects and that temporal aspects of stimulus presentation are of high relevance.
-
The information available through our senses is noisy, incomplete, and to varying degrees ambiguous. The perceptual system must create stable and reliable percepts out of this restricted information. It solves this perceptual inference problem by integrating memories of previous percepts and making predictions about the perceptual future. Using ambiguous figures and a new experimental approach, we studied whether generating predictions based on regularities in the past affects processing of the present and how this is done. Event-related potentials (ERPs) were measured to investigate whether a highly regular temporal context of either ambiguous or unambiguous stimulus variants differently affects processing of a current stimulus and/or task execution. Further, we tested whether symbolic announcements about the immediate perceptual future can replace the past experience of regularities as a source for making predictions. Both ERP and reaction time varied as a function of stimulus ambiguity in the temporal context of a present stimulus. No such effects were found with symbolic announcements. Our results indicate that predictions about the future automatically alter processing of the present, even if the predictions are irrelevant for the present percept and task. However, direct experiences of past regularities are necessary for predicting the future whereas symbolic information about the future is not sufficient.
-
A popular model for sensory processing, known as predictive coding, proposes that incoming signals are iteratively compared with top-down predictions along a hierarchical processing scheme. At each step, error signals arising from differences between actual input and prediction are forwarded and recurrently minimized by updating internal models to finally be "explained away". However, the neuronal mechanisms underlying such computations and their limitations in processing speed are largely unknown. Further, it remains unclear at which step of cortical processing prediction errors are explained away, if at all. In the present study, human subjects briefly viewed the superposition of two orthogonally oriented gratings followed by abrupt removal of one orientation after either 33 or 200 milliseconds. Instead of strictly seeing the remaining orientation, observers report rarely but highly significantly an illusory percept of the arithmetic difference between previous and actual orientations. Previous findings in cats using the identical paradigm suggest that such difference signals are inherited from first steps of visual cortical processing. In light of early modeling accounts of predictive coding, in which visual neurons were interpreted as residual error detectors signaling the difference between actual input and its temporal prediction based on past input, our data may indicate continued access to residual errors. Such strategy permits time-critical perceptual decision making across a spectrum of competing internal signals up to the highest levels of processing. Thus, the occasional appearance of a prediction error-like illusory percept may uncover maintained flexibility at perceptual decision stages when subjects cope with highly dynamic and ambiguous visual stimuli.
-
The worldwide fascination of da Vinci's Mona Lisa has been dedicated to the emotional ambiguity of her face expression. In the present study we manipulated Mona Lisa's mouth curvature as one potential source of ambiguity and studied how a range of happier and sadder face variants influences perception. In two experimental conditions we presented different stimulus ranges with different step sizes between stimuli along the happy-sad axis of emotional face expressions. Stimuli were presented in random order and participants indicated the perceived emotional face expression (first task) and the confidence of their response (second task). The probability of responding 'happy' to the original Mona Lisa was close to 100%. Furthermore, in both conditions the perceived happiness of Mona Lisa variants described sigmoidal functions of the mouth curvature. Participants' confidence was weakest around the sigmoidal inflection points. Remarkably, the sigmoidal functions, as well as confidence values and reaction times, differed significantly between experimental conditions. Finally, participants responded generally faster to happy than to sad faces. Overall, the original Mona Lisa seems to be less ambiguous than expected. However, perception of and reaction to the emotional face content is relative and strongly depends on the used stimulus range.
-
Environmental information available to our senses is incomplete and to varying degrees ambiguous. It has to be disambiguated in order to construct stable and reliable percepts. Ambiguous figures are artificial examples where perception is maximally unstable and alternates between possible interpretations. Tiny low-level changes can disambiguate an ambiguous figure and thus stabilize percepts. The present study compares ERPs evoked by ambiguous stimuli and disambiguated stimulus variants across three visual categories: geometry (Necker cube), motion (stroboscopic alternative motion stimulus, SAM) and semantics (Boring's old/young woman). We found that (a) disambiguated stimulus variants cause stable percepts and evoke two huge positive ERP excursions (Cohen's effect sizes 1-2), (b) the amplitudes of these ERP effects are inversely related to the degree of stimulus ambiguity, and (c) this pattern of results is consistent across all three tested visual categories. This generality across visual categories points to mechanisms at a very abstract (cognitive) level of processing. We discuss our results in the context of a high-level Bayesian inference unit that evaluates the reliability of perceptual processing results, given a priori incomplete, ambiguous sensory information. The ERP components may reflect the outcome of this reliability estimation.
-
BACKGROUND: In von Schiller's Stroboscopic Alternative Motion (SAM) stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances). Further, with equal horizontal and vertical dot distances (AR = 1) perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion. METHODS: We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames. RESULTS: Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias. DISCUSSION: Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual observer.
-
Ambiguous figures attract observers because perception alternates between different interpretations while the sensory information stays unchanged. Understanding the underlying processes is difficult because the precise time instant of this endogenous reversal event needs to be known but is difficult to measure. Presenting ambiguous figures discontinuously and using stimulus onset as estimation of the reversal event increased temporal resolution and provided a series of well-confirmed EEG signatures. In the current EEG study we used this 'onset paradigm' for the first time with Boring's old/young woman stimulus. We found an early occipital event-related potential (ERP) correlate of reversals between the perception of the old woman and the perception of the young woman that fits well with previous ERP findings. This component was not followed by the often-reported occipito-parietal Reversal Negativity at 260 ms, but instead by an occipito-temporal N170, that is typically reported with face stimuli. We interpret our results as follows: ambiguity conflicts take place during processing of stimulus elements in early visual areas roughly 130 ms after stimulus onset. The disambiguation of these elements and their assembly to object 'gestalts' result from an interplay between early visual and object-specific brain areas in a temporal window between 130 and 260 ms after stimulus onset. In the particular case of Boring's old/young woman the processes of element disambiguation and gestalt construction are already finished at 170 ms and, thus, 90 ms earlier than in the case of ambiguous geometric figures (eg Necker cube or Schroeder staircase) or of binocular rivalrous gratings.
-
Temporally distributed ("spaced") learning can be twice as efficient as massed learning. This "spacing effect" occurs with a broad spectrum of learning materials, with humans of different ages, with non-human vertebrates and also invertebrates. This indicates, that very basic learning mechanisms are at work ("generality"). Although most studies so far focused on very narrow spacing interval ranges, there is some evidence for a non-monotonic behavior of this "spacing effect" ("nonlinearity") with optimal spacing intervals at different time scales. In the current study we focused both the nonlinearity aspect by using a broad range of spacing intervals and the generality aspect by using very different learning/practice domains: Participants learned German-Japanese word pairs and performed visual acuity tests. For each of six groups we used a different spacing interval between learning/practice units from 7 min to 24 h in logarithmic steps. Memory retention was studied in three consecutive final tests, one, seven and 28 days after the final learning unit. For both the vocabulary learning and visual acuity performance we found a highly significant effect of the factor spacing interval on the final test performance. In the 12 h-spacing-group about 85% of the learned words stayed in memory and nearly all of the visual acuity gain was preserved. In the 24 h-spacing-group, in contrast, only about 33% of the learned words were retained and the visual acuity gain dropped to zero. The very similar patterns of results from the two very different learning/practice domains point to similar underlying mechanisms. Further, our results indicate spacing in the range of 12 hours as optimal. A second peak may be around a spacing interval of 20 min but here the data are less clear. We discuss relations between our results and basic learning at the neuronal level.
-
PURPOSE: We sought brain activity that predicts visual consciousness. METHODS: We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. RESULTS: We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. CONCLUSION: We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness.
-
During observation of an ambiguous Necker cube, our percept changes spontaneously although the external stimulus does not. An EEG paradigm allowing time-resolved EEG measurement during endogenous perceptual reversals recently revealed a chain of ERP correlates beginning with an early occipital positivity at around 130 ms (Reversal Positivity, "RP"). In order to better understand the functional role of this RP, we investigated its relation to the P100, which is spatiotemporally close, typically occurring 100 ms after onset of a visual stimulus at occipital electrodes. We compared the relation of the ERP amplitudes to varying sizes of ambiguous Necker cubes. The main results are: (1) The P100 amplitude increases monotonically with stimulus size but is independent of the participants' percept. (2) The RP, in contrast, is percept-related and largely unaffected by stimulus size. (3) A similar pattern to RP was found for reaction times: They depend on the percept but not on stimulus size. We speculate that the P100 reflects processing of elementary visual features, while the RP is related to a processing conflict during 3D interpretation that precedes a reversal. The present results indicate that low-level visual processing (related to stimulus size) and (relative) high-level processing (related to perceptual reversal) occur in close spatial and temporal vicinity.
-
Ambiguous figures induce sudden transitions between rivaling percepts. We investigated electroencephalogram frequency modulations of accompanying change-related de- and rebinding processes. Presenting the stimuli discontinously, we synchronized perceptual reversals with stimulus onset, which served as a time reference for averaging. The resultant gain in temporal resolution revealed a sequence of time-frequency correlates of the reversal process. Most conspicuous was a transient right-hemispheric gamma modulation preceding endogenous reversals by at least 200 ms. No such modulation occurred with exogenously induced reversals of unambiguous stimulus variants. Post-onset components were delayed for ambiguous compared to unambiguous stimuli. The time course of oscillatory activity differed in several respects from predictions based on binding-related hypotheses. The gamma modulation preceding endogenous reversals may indicate an unstable brain state, ready to switch.
-
Although our eyes receive incomplete and ambiguous information, our perceptual system is usually able to successfully construct a stable representation of the world. In the case of ambiguous figures, however, perception is unstable, spontaneously alternating between equally possible outcomes. The present study compared EEG responses to ambiguous figures and their unambiguous variants. We found that slight figural changes, which turn ambiguous figures into unambiguous ones, lead to a dramatic difference in an ERP ("event-related potential") component at around 400 ms. This result was obtained across two different categories of figures, namely the geometric Necker cube stimulus and the semantic Old/Young Woman face stimulus. Our results fit well into the Bayesian inference concept, which models the evaluation of a perceptual interpretation's reliability for subsequent action planning. This process seems to be unconscious and the late EEG signature may be a correlate of the outcome.
Erkunden
Team
Eintragsart
- Zeitschriftenartikel (13)
Sprache
- Englisch (13)
Thema
- Young Adult
- Adaptation, Physiological/physiology (1)
- Adult (13)
- Ambiguous figures, Necker cube, Multistable perception, EEG, ERPs, Bayesian inference (1)
- Analysis of Variance (1)
- Bayes Theorem (1)
- Brain/physiology (1)
- Cerebral Cortex (1)
- Cerebral Cortex/*physiology (1)
- Conflict, Psychological (1)
- Consciousness/*physiology (1)
- Data Interpretation, Statistical (1)
- Depth Perception/*physiology (1)
- Discrimination, Psychological/*physiology (1)
- Electroencephalography (5)
- *Electroencephalography (1)
- Emotions (1)
- Evoked Potentials (2)
- Evoked Potentials/physiology (1)
- *Evoked Potentials, Visual (2)
- Evoked Potentials, Visual (2)
- Evoked Potentials, Visual/physiology (1)
- Evoked Potentials, Visual/*physiology (1)
- *Facial Expression (1)
- Female (13)
- Form Perception/*physiology (1)
- Fourier Analysis (1)
- Functional Laterality/physiology (1)
- Happiness (1)
- Humans (13)
- Illusions/*physiology (1)
- *Imagination/physiology (1)
- *Judgment (1)
- Judgment/*physiology (1)
- Language (1)
- Learning/*physiology (1)
- Male (13)
- *Memory (1)
- Memory/physiology (1)
- Mental Recall/physiology (1)
- Middle Aged (1)
- Motion Perception/*physiology (1)
- *Museums (1)
- Occipital Lobe/*physiology (1)
- Optical Illusions (1)
- Optical Illusions/physiology (1)
- Optical Illusions/*physiology (1)
- Orientation, Spatial (1)
- *Paintings (1)
- *Pattern Recognition, Visual (1)
- Pattern Recognition, Visual/*physiology (1)
- Perception (1)
- *Photic Stimulation (2)
- Photic Stimulation (3)
- Photic Stimulation/*instrumentation/methods (1)
- Photic Stimulation/*methods (1)
- Photic Stimulation/methods (1)
- Psychophysics (2)
- Reaction Time (3)
- Reaction Time/physiology (1)
- Retention, Psychology (1)
- Touch Perception/*physiology (1)
- Vision, Binocular/*physiology (1)
- Vision, Binocular/physiology (1)
- Visual Acuity/*physiology (1)
- *Visual Perception (1)
- Visual Perception (1)
- *Visual Perception/physiology (1)
- Visual Perception/*physiology (4)
- Visual Perception/physiology (1)