Ihre Suche

Team

Ergebnisse 191 Einträge

  • Previously, we observed cortisol induced enhancement of neural fear acquisition in women. Yet, less is known about cortisol effects on neural fear extinction. Via differential fear conditioning, we explored cortisol effects on acquisition and extinction. Twenty contingency aware women taking monophasic oral contraceptives were included; 10 received placebo, 10 cortisol before conditioning. Group differences emerged in anterior cingulate cortex (ACC), hippocampus, and--as trend--in insula and thalamus during acquisition and in hippocampus, thalamus, and--as trend--in amygdala, insula, and ACC during extinction. During acquisition group differences were due to higher responses to the CS+ than to the CS- in the cortisol group. Notably, during extinction, group differences were due to higher responses to the CS- than to the CS+ in this group. Thus, cortisol induced a fear acquisition and extinction specific enhanced neural differentiation.

  • BACKGROUND: Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain. RESULTS: Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. CONCLUSIONS: The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.

  • This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation.

  • Drug-associated stimuli (cues) have a prominent role in addiction research because they are able to provoke craving and relapses. Generally, drug cues are seen as conditioned excitatory stimuli, which elicit drug seeking and usage. However, newer data suggest differential effects for smoking stimuli depending on their stage in the smoking ritual. Specifically, stimuli associated with the terminal stage of smoke consumption (END-stimuli) may evoke reactivity opposite to the reactivity evoked by stimuli associated with the beginning of smoke consumption (BEGIN-stimuli). This fMRI study compared 20 nondeprived smokers with 20 nonsmokers to unravel the influence of smoking-related pictures displaying the beginning (BEGIN-stimuli) and termination (END-stimuli) of the smoking ritual on neural activity in the addiction network. In addition, 20 deprived smokers (12 h deprivation) were investigated to explore the effects of deprivation on the processing of these stimuli. In nondeprived smokers, BEGIN-stimuli reliably activated the addiction network (for example, the ventral striatum, orbitofrontal cortex, and anterior cingulate cortex (ACC)). In contrast, END-stimuli triggered a differential pattern of activations as well as deactivations; deactivations were found in the ventral striatum and the ACC. Deprivation had no clear effect on the responses triggered by BEGIN-stimuli, but affected the reactivity to END-stimuli. Our data clearly suggest that stimuli associated with different stages of the smoking ritual trigger differential neuronal responses. While BEGIN-stimuli generally seem to activate the addiction network, END-stimuli presumably have some inhibitory properties. This new finding might add to a more differentiated understanding of cue reactivity and addiction.

  • A Concealed Information Test (CIT) investigates differential physiological responses to deed-related (probe) vs. irrelevant items. The present study focused on the detection of concealed information using simultaneous recordings of autonomic and brain electrical measures. As a secondary issue, verbal and pictorial presentations were compared with respect to their influence on the recorded measures. Thirty-one participants underwent a mock-crime scenario with a combined verbal and pictorial presentation of nine items. The subsequent CIT, designed with respect to event-related potential (ERP) measurement, used a 3-3.5s interstimulus interval. The item presentation modality, i.e. pictures or written words, was varied between subjects; no response was required from the participants. In addition to electroencephalogram (EEG), electrodermal activity (EDA), electrocardiogram (ECG), respiratory activity, and finger plethysmogram were recorded. A significant probe-vs.-irrelevant effect was found for each of the measures. Compared to sole ERP measurement, the combination of ERP and EDA yielded incremental information for detecting concealed information. Although, EDA per se did not reach the predictive value known from studies primarily designed for peripheral physiological measurement. Presentation modality neither influenced the detection accuracy for autonomic measures nor EEG measures; this underpins the equivalence of verbal and pictorial item presentation in a CIT, regardless of the physiological measures recorded. Future studies should further clarify whether the incremental validity observed in the present study reflects a differential sensitivity of ERP and EDA to different sub-processes in a CIT.

  • Executive working memory operations are related to prefrontal regions in the healthy brain. Moreover, neuroimaging data provide evidence for a functional dissociation of ventrolateral and dorsolateral prefrontal cortex. Most authors either suggest a modality-specific or a function-specific prefrontal cortex organization. In the present study we particularly aimed at the identification of different prefrontal cerebral areas that are involved in executive inhibitory processes during spatial working memory encoding. In an fMRI study (functional magnetic resonance imaging) we examined the neural correlates of spatial working memory processing by varying the amount of executive demands of the task. Twenty healthy volunteers performed the Corsi Block-Tapping test (CBT) during fMRI. The CBT requires the storage and reproduction of spatial target sequences. In a second condition, we presented an adapted version of the Block-Suppression-Test (BST). The BST is based on the original CBT but additionally requires the active suppression of visual distraction within the target sequences. In comparison to the CBT performance, particularly the left dorsolateral prefrontal cortex (BA 9) showed more activity during the BST condition. Our results show that the left dorsolateral prefrontal cortex plays a crucial role for executive controlled inhibition of spatial distraction. Furthermore, our findings are in line with the processing model of a functional dorsolateral-ventrolateral prefrontal cortex organization.

  • Fear conditioning is influenced by stress but opposing effects in males and females have often been reported. In a previous human functional magnetic resonance imaging (fMRI) study, we observed acute effects of the stress hormone cortisol on prefrontal structures. Men showed evidence for impaired fear conditioning after cortisol treatment, while the opposite pattern was found for women. In the current experiment, we tested whether similar sex-dependent effects would occur on the neural level if contingency awareness was prevented experimentally to investigate implicit learning processes. A differential fear conditioning experiment with transcutaneous electrical stimulation as unconditioned stimulus and geometric figures as conditioned stimuli (CS) was conducted. One figure was always paired (CS+), whereas the other (CS-) was never paired with the UCS. Thirty-nine (19 female) subjects participated in this fMRI study, receiving either placebo or 30 mg cortisol (hydrocortisone) before conditioning. Dependent variables were skin conductance responses (SCRs) and neural activity (BOLD signal). In line with prior findings in unaware participants, no differential learning could be observed for the SCRs. However, a sex x cortisol interaction was detected with a reduced mean response to the CS after cortisol treatment in men, while the opposite pattern was observed in women (enhanced mean SCR under cortisol). In the contrast CS+ minus CS-, neural activity showed a sex x cortisol interaction in the insula and further trends in the hippocampus and the thalamus. In these regions, cortisol reduced the CS+/CS- differentiation in men but enhanced it in women. In contrast to these sex specific effects, differential amygdala activation was found in the placebo group but not in the cortisol group, irrespective of sex. Further, differential neural activity in the amygdala and thalamus were positively correlated with the SCRs in the placebo group only. The present study in contingency unaware participants illustrates that cortisol has in some brain regions sex specific effects on neural correlates of emotional learning. These effects might translate into a different vulnerability of the two sexes for anxiety disorders.

  • INTRODUCTION: Learning processes like classical conditioning are involved in mediating sexual behavior. Yet, the neural bases underlying these processes have not been investigated so far. AIM: The aim of this study was to explore neural activations of classical conditioning of sexual arousal with respect to sex differences and contingency awareness. METHODS: In the acquisition phase, a geometric figure (CS+) was presented for 8 seconds and was followed by highly sexual arousing pictures (UCS), whereas another figure (CS-) predicted neutral pictures. Ratings and contingency awareness were assessed after the entire conditioning procedure. Forty subjects (20 females) were classified into one of four groups according to their sex and the development of contingency awareness (aware females, aware males, unaware females, and unaware males). MAIN OUTCOME MEASURES: Blood oxygen level dependent (BOLD) responses measured by functional magnetic resonance imaging (fMRI), skin conductance responses (SCRs), and subjective ratings. RESULTS: fMRI analysis showed two effects (awareness and sex) when comparing CS+ with CS-: (i) aware compared to unaware subjects showed enhanced differentiation (e.g., ventral striatum, orbitofrontal cortex, occipital cortex); and (ii) men showed increased activity compared to women in the amygdala, thalamus, and brainstem. CS+ and CS- ratings differed in aware subjects only. However, no conditioned SCRs occurred in any group. CONCLUSION: The increased activity in men is in line with theories postulating that men are generally more prone to conditioning of sexual arousal. Further, contingency awareness seems to be an important factor in appetitive learning processes, which facilitates conditioning processes.

  • The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  • Because of its abstract nature, worrying might function as an avoidance response in order to cognitively disengage from fearful imagery. The present functional magnetic resonance imaging study investigated neural correlates of aversive imagery and their association with worry tendencies, as measured by the Penn State Worry Questionnaire (PSWQ). Nineteen healthy women first viewed, and subsequently imagined pictures from two categories, 'threat' and 'happiness'. Worry tendencies were negatively correlated with brain activation in the anterior cingulate cortex, the prefrontal cortex (dorsolateral, dorsomedial, ventrolateral), the parietal cortex and the insula. These negative correlations between PSWQ scores and localized brain activation were specific for aversive imagery. Moreover, activation in the above mentioned regions was positively associated with the experienced vividness of both pleasant and unpleasant mental pictures. As the identified brain regions are involved in emotion regulation, vivid imagery and memory retrieval, a lowered activity in high PSWQ scorers might be associated with cognitive disengagement from aversive imagery as well as insufficient refresh rates of mental pictures. Our preliminary findings encourage future imagery studies on generalized anxiety disorder patients, as one of the main symptoms of this disorder is excessive worrying.

  • Phobic responses are strong emotional reactions towards phobic objects, which can be described as a deficit in the automatic regulation of emotions. Difficulties in the voluntary cognitive control of these emotions suggest a further phobia-specific deficit in effortful emotion regulation mechanisms. The actual study is based on this emotion regulation conceptualization of specific phobias. The aim is to investigate the neural correlates of these two emotion regulation deficits in spider phobics. Sixteen spider phobic females participated in a functional magnetic resonance imaging (fMRI) study in which they were asked to voluntarily up- and down-regulate their emotions elicited by spider and generally aversive pictures with a reappraisal strategy. In line with the hypothesis concerning an automatic emotion regulation deficit, increased activity in the insula and reduced activity in the ventromedial prefrontal cortex was observed. Furthermore, phobia-specific effortful regulation within phobics was associated with altered activity in medial prefrontal cortex areas. Altogether, these results suggest that spider phobic subjects are indeed characterized by a deficit in the automatic as well as the effortful regulation of emotions elicited by phobic compared with aversive stimuli. These two forms of phobic emotion regulation deficits are associated with altered activity in different medial prefrontal cortex subregions.

  • Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.

  • This functional magnetic resonance imaging study investigated long-term effects of cognitive behavior therapy (CBT) in individuals suffering from spider phobia. Ten female patients who had shown positive immediate CBT effects were invited to take part in a 6-month follow-up investigation. Here, the patients, along with eight non-phobic females, were presented with the same pictures depicting spiders, generally disgust-inducing, generally fear-inducing and neutral content, which they had viewed 6 months earlier. Patients' self-report and overt behavior indicated a positive long-term clinical improvement. Related hemodynamic changes included an increase in medial orbitofrontal cortex (OFC) activity. As the medial OFC is involved in emotion-related learning, especially in the representation of positive stimulus-outcome associations, we conclude that the medial OFC effect constitutes the neuronal basis of the lasting positive CBT outcome. Activity to disorder-irrelevant pictures decreased across the sessions in the lateral OFC and in the insula, which most likely reflects general habituation.

  • BACKGROUND: The underlying neurobiological mechanisms that account for the onset and maintenance of binge-eating disorder (BED) are not sufficiently understood. This functional magnetic resonance imaging (fMRI) study explored the neural correlates of visually induced food reward and loathing. METHOD: Sixty-seven female participants assigned to one of four groups (overweight BED patients, overweight healthy control subjects, normal-weight healthy control subjects, and normal-weight patients with bulimia nervosa) participated in the experiment. After an overnight fast, the participants' brain activation was recorded during each of the following three conditions: visual exposure to high-caloric food, to disgust-inducing pictures, and to affectively neutral pictures. After the fMRI experiment, the participants rated the affective value of the pictures. RESULTS: Each of the groups experienced the food pictures as very pleasant. Relative to the neutral pictures, the visual food stimuli provoked increased activation in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and insula across all participants. The BED patients reported enhanced reward sensitivity and showed stronger medial OFC responses while viewing food pictures than all other groups. The bulimic patients displayed greater arousal, ACC activation, and insula activation than the other groups. Neural responses to the disgust-inducing pictures as well as trait disgust did not differ between the groups. CONCLUSIONS: This study provides first evidence of differential brain activation to visual food stimuli in patients suffering from BED and bulimia nervosa.

  • OBJECTIVE: The quality of averaged gradient artifact subtraction from EEG recorded during fMRI is highly dependent on the accuracy of gradient artifact sampling. Even small sampling shifts (e.g. a single datapoint at 5kHz) increase the variance of the sampled gradient artifacts because of very steep slopes in the signal time course. Hence, although principally gradient artifacts are invariant signals because of their technical origin, variance attributed to sampling errors attenuates the effect of artifact removal. Recently, it has been shown that synchronizing the EEG-amplifier clock to the MR-scanner control-device clock improves artifact reduction by subtraction. METHODS: In order to investigate the synchronized measurement of combined EEG-fMRI, we used simulated EEG by measuring function generator signals in the MR-scanner. Only the usage of known signals allows an assessment of the improvement in accuracy of artifact recording by synchronized compared to non-synchronized measurement, since the signal is identical in both conditions. RESULTS: After averaged gradient artifact subtraction synchronized recorded signals were apparently less distorted than non-synchronized recorded signals. Spectral analyses revealed that especially artifact frequencies above 50Hz had less power in restored synchronized compared to restored non-synchronized recorded signals. Computed total signal variances were not always less in restored synchronized compared to restored non-synchronized recorded signals. CONCLUSIONS: Taken together, synchronizing simultaneous EEG-fMRI measurement is a useful enhancement for averaged gradient artifact subtraction although post-correction filtering is still necessary. SIGNIFICANCE: Our results support the recent finding that synchronization improves the quality of averaged gradient artifact subtraction. However, quantitatively we could not verify a systematic benefit of recording electrical signals during fMRI synchronously rather than non-synchronously to the MR-scanner control-device clock.

  • The Concealed Information Test (CIT) requires the examinee to deceptively deny recognition of known stimuli and to truthfully deny recognition of unknown stimuli. Because deception and orienting are typically coupled, it is unclear how exactly these sub-processes affect the physiological responses measured in the CIT. The present study aimed at separating the effects of deception from those of orienting. In a mock-crime study, using a modified CIT, thirty-six of seventy-two subjects answered truthfully ('truth group'), whereas the other thirty-six concealed their knowledge ('lie group'). Answering was delayed for 4 s after item presentation. Electrodermal activity (EDA), respiration (RLL), and phasic heart rate (HR) were recorded. A decomposition of EDA responses revealed two response components; the response in the first interval was expected to indicate orienting, stimulus evaluation, and answer preparation, whereas the response in the second interval was assumed to reflect answer-related processes. Inconclusively, both EDA components differentiated between 'probe' and 'irrelevant' items in both groups. Phasic HR and RLL differed between item classes only in the 'lie' group, thus reflecting answer-related processes, possibly deception, rather than merely orienting responses. The findings further support the notion that psychophysiological measures elicited by a modified CIT may reflect different mental processes involved in orienting and deception.

  • The simulation concept suggested by Jeannerod (Neuroimage 14:S103-S109, 2001) defines the S-states of action observation and mental simulation of action as action-related mental states lacking overt execution. Within this framework, similarities and neural overlap between S-states and overt execution are interpreted as providing the common basis for the motor representations implemented within the motor system. The present brain imaging study compared activation overlap and differential activation during mental simulation (motor imagery) with that while observing gymnastic movements. The fMRI conjunction analysis revealed overlapping activation for both S-states in primary motor cortex, premotor cortex, and the supplementary motor area as well as in the intraparietal sulcus, cerebellar hemispheres, and parts of the basal ganglia. A direct contrast between the motor imagery and observation conditions revealed stronger activation for imagery in the posterior insula and the anterior cingulate gyrus. The hippocampus, the superior parietal lobe, and the cerebellar areas were differentially activated in the observation condition. In general, these data corroborate the concept of action-related S-states because of the high overlap in core motor as well as in motor-related areas. We argue that differential activity between S-states relates to task-specific and modal information processing.

Last update from database: 04.06.25, 15:35 (UTC)

Erkunden

Team

Eintragsart

Sprache

Thema