Ihre Suche

Team

Ergebnisse 3 Einträge

  • In emotional learning tasks, sex differences, stress effects and an interaction of these two moderators have often been observed. The sex hormones estradiol (E2) and progesterone (P4) vary over the menstrual cycle. We tested groups with different sex hormone status: 39 men, 30 women in the luteal phase (LU, high E2+P4) and 29 women taking oral contraceptives (OC, low E2+P4). They received either 30 mg cortisol or placebo prior to instructed differential fear conditioning consisting of neutral conditioned stimuli (CS) and an electrical stimulation (unconditioned stimulus; UCS). One figure (CS+) was paired with the UCS, the other figure (CS-) never. During extinction, no electrical stimulation was administered. Regarding fear acquisition, results showed higher skin conductance and higher brain responses to the CS+ compared to the CS- in several structures that were not modulated by cortisol or sex hormones. However, OC women exhibited higher CS+/CS- differentiations than men and LU women in the amygdala, thalamus, anterior cingulate and ventromedial prefrontal cortex during extinction. The suppression of endogenous sex hormones by OC seems to alter neuronal correlates of extinction. The observation that extinction is influenced by the current sex hormone availability is relevant for future studies and might also be clinically important.

  • In an fMRI study, effects of contingency awareness on conditioned responses were assessed in three groups comprising 118 subjects. A differential fear-conditioning paradigm with visual conditioned stimuli, an electrical unconditioned stimulus and two distractors was applied. The instructed aware group was informed about the contingencies, whereas the distractors prevented contingency detection in the unaware group. The third group (learned aware) was not informed about the contingencies, but learned them despite the distractors. Main effects of contingency awareness on conditioned responses emerged in several brain structures. Post hoc tests revealed differential dorsal anterior cingulate, insula and ventral striatum responses in aware conditioning only, whereas the amygdala was activated independent of contingency awareness. Differential responses of the hippocampus were specifically observed in learned aware subjects, indicating a role in the development of contingency awareness. The orbitofrontal cortex showed varying response patterns: lateral structures showed higher responses in instructed aware than unaware subjects, the opposite was true for medial parts. Conditioned subjective and electrodermal responses emerged only in the two aware groups. These results confirm the independence of conditioned amygdala responses from contingency awareness and indicate specific neural circuits for different aspects of fear acquisition in unaware, learned aware and instructed aware subjects.

  • Functional magnetic resonance imaging (fMRI) studies consistently demonstrate an enhanced activation of the visual cortex in reaction to emotionally salient visual stimuli. This increase of activation is probably modulated by top-down processes, that are initiated in emotion processing structures, specifically the amygdala and the orbitofrontal cortex. In the present fMRI study, a differential fear conditioning paradigm was applied to investigate this assumed modulation. Hemodynamic responses towards a neutral visual stimulus (CS+) predicting an electrical stimulation (UCS) were compared with responses towards a neutral and unpaired stimulus (CS-). Thereby, particularly the time courses of neural responses were considered. Skin conductance measures were concurrently recorded. Our results show that the differentiation between CS+ and CS- within the amygdala and the extended visual cortex was accomplished during a late acquisition phase. In the orbitofrontal cortex the differentiation occurred at an earlier stage and was then sustained throughout acquisition. It is suggested that these altering activation patterns are reflecting different phases of learning, integrating the analyzed regions to varying degrees. Additionally, the results indicate that statistical analyses comprising a temporal variation of hemodynamic responses are more likely to detect amygdala activation.

Last update from database: 04.06.25, 15:35 (UTC)