Ihre Suche

Ergebnisse 7 Einträge

  • Intuitively, being aware of one's inner processes to move should be crucial for the control of voluntary movements. However, research findings suggest that we are not always aware of the processes leading to movement execution. The present study investigated induced first-person access to inner processes of movement initiation and the underlying brain activities which contribute to the emergence of voluntary movement. Moreover, we investigated differences in task performance between mindfulness meditators and non-meditators while assuming that meditators are more experienced in attending to their inner processes. Two Libet-type tasks were performed; one in which participants were asked to press a button at a moment of their own decision, and the other one in which participants' attention was directed towards their inner processes of decision making regarding the intended movement which lead them to press the button. Meditators revealed a consistent readiness potential (RP) between the two tasks with correlations between the subjective intention time to act and the slope of the early RP. However, non-meditators did not show this consistency. Instead, elicited introspection of inner processes of movement initiation changed early brain activity that is related to voluntary movement processes. Our findings suggest that compared to non-meditators, meditators are more able to access the emergence of negative deflections of slow cortical potentials (SCPs), which could have fundamental effects on initiating a voluntary movement with awareness.

  • Stress and fear conditioning processes are both important vulnerability factors in the development of psychiatric disorders. In behavioral studies considerable sex differences in fear learning have been observed after increases of the stress hormone cortisol. But neuroimaging experiments, which give insights into the neurobiological correlates of stress × sex interactions in fear conditioning, are lacking so far. In the current functional magnetic resonance imaging (fMRI) study, we tested whether a psychosocial stressor (Trier Social Stress Test) compared to a control condition influenced subsequent fear conditioning in 48 men and 48 women taking oral contraceptives (OCs). One of two pictures of a geometrical figure was always paired (conditioned stimulus, CS+) or never paired (CS-) with an electrical stimulation (unconditioned stimulus). BOLD responses as well as skin conductance responses were assessed. Sex-independently, stress enhanced the CS+/CS- differentiation in the hippocampus in early acquisition but attenuated conditioned responses in the medial frontal cortex in late acquisition. In early acquisition, stress reduced the CS+/CS- differentiation in the nucleus accumbens in men, but enhanced it in OC women. In late acquisition, the same pattern (reduction in men, enhancement in OC women) was found in the amygdala as well as in the anterior cingulate. Thus, psychosocial stress impaired the neuronal correlates of fear learning and expression in men, but facilitated them in OC women. A sex-specific modulation of fear conditioning after stress might contribute to the divergent prevalence of men and women in developing psychiatric disorders.

  • PURPOSE: We sought brain activity that predicts visual consciousness. METHODS: We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. RESULTS: We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. CONCLUSION: We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness.

  • Perceiving a first target stimulus (T1) in a rapid serial visual presentation stream results in a transient impairment in detecting a second target (T2). This "attentional blink" is modulated by the emotional relevance of T1 and T2. The present experiment examined the neural underpinnings of the emotional modulation of the attentional blink. Behaviorally, the attentional blink was reduced for emotional T2 while emotional T1 led to a prolonged attentional blink. Using functional magnetic resonance imaging, we observed amygdala activation associated with the reduced attentional blink for emotional T2 in the face of neutral T1. The prolonged attentional blink following emotional T1 was correlated with enhanced activity in a cortical network including the anterior cingulate cortex, the insula and the orbitofrontal cortex. These results suggest that brain areas previously implicated in rather reflexive emotional reactions are responsible for the reduced attentional blink for emotional T2 whereas neural structures previously related to higher level processing of emotional information mediate the prolonged attentional blink following emotional T1.

  • The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.

  • Recent work has demonstrated the feasibility of simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Virtually no systematic comparisons between EEG recorded inside and outside the MR scanner have been conducted, and it is unknown if different kinds of frequency mix, topography, and domain-specific processing are uniformly recordable within the scanner environment. The aim of the study was to investigate several typical EEG waveforms in the same subjects inside the magnet during fMRI and outside the MR examination room. We examined whether uniform artifact subtraction allows the extraction of these different EEG waveforms inside the scanner during EPI scanning to the same extent as outside the scanner. Three well-established experiments were conducted, eliciting steady state visual evoked potentials (SSVEP), lateralized readiness potentials (LRP), and frontal theta enhancement induced by mental addition. All waveforms could be extracted from the EEG recorded during fMRI. Substantially no differences in these waveforms of interest were found between gradient-switching and intermediate epochs during fMRI (only the SSVEP-experiment was designed for a comparison of gradient-with intermediate epochs), or between waveforms recorded inside the scanner during EPI scanning and outside the MR examination room (all experiments). However, non-specific amplitude differences were found between inside and outside recorded EEG at lateral electrodes, which were not in any interaction with the effects of interest. The source of these differences requires further exploration. The high concordance of activation patterns with published results demonstrates that EPI-images could be acquired during EEG recording without significant distortion.

  • The majority of neuroimaging studies on affective processing have indicated that there are specific brain structures, which are selectively responsive to fear and disgust. Whereas the amygdala is assumed to be fear-related, the insular cortex is most likely involved in disgust processing. Since these findings are mainly a result of studies focusing exclusively either on fear, or on disgust, but rarely on both emotions together, the present experiment explored the neural effects of viewing disgusting and fear-inducing pictures in contrast to neutral pictures. This was done by means of functional magnetic resonance imaging (fMRI) with 19 subjects (nine males, ten females), who also gave affective ratings for the presented pictures. The fear and the disgust pictures were able to induce the target emotions and they received comparable valence and arousal ratings. The processing of both aversive picture types was associated with an increased brain activation in the occipital-temporal lobe, in the prefrontal cortex, and in the thalamus. The amygdala was significantly activated by disgusting, but not by fear-inducing, pictures. Thus, our data are in contrast with the idea of highly emotion-specific brain structures and rather suggest the existence of a common affective circuit.

Last update from database: 04.06.25, 15:35 (UTC)

Erkunden

Team

Eintragsart

Sprache

Thema