Ihre Suche

Ergebnisse 7 Einträge

  • Latent inhibition (LI) is an important model for understanding cognitive deficits in schizophrenia. Disruption of LI is thought to result from an inability to ignore irrelevant stimuli. The study investigated LI in schizophrenic patients by using Pavlovian conditioning of electrodermal responses in a complete within-subject design. Thirty-two schizophrenic patients (16 acute, unmedicated and 16 medicated patients) and 16 healthy control subjects (matched with respect to age and gender) participated in the study. The experiment consisted of two stages: preexposure and conditioning. During preexposure two visual stimuli were presented. one of which served as the to-be-conditioned stimulus (CSp + ) and the other one was the not-to-be-conditioned stimulus (CSp - ) during the following conditioning ( = acquisition). During acquisition, two novel visual stimuli(CSn + and CSn - ) were introduced. A reaction time task was used as the unconditioned stimulus (US). LI was defined as the difference in response differentiation observed between preexposed and non-preexposed sets of CS + and CS - . During preexposure, the schizophrenic patients did not differ in electrodermal responding from the control subjects, neither concerning the extent of orienting nor the course of habituation. The exposure to novel stimuli at the beginning of the acquisition elicited reduced orienting responses in unmedicated patients compared to medicated patients and control subjects. LI was observed in medicated schizophrenic patients and healthy controls, but not in acute unmedicated patients. Furthermore LI was found to be correlated with the duration of illness: it was attenuated in patients who had suffered their first psychotic episode.

  • Nonaversive unconditional stimuli (USs) are seldom used in human classic conditioning of autonomic responses. One major objection to their use is that they produce deficits in electrodermal (ED) second- and third-interval response conditioning. However, a nonaversive reaction time (RT) task that includes feedback of success has been shown to be an effective US while avoiding this disadvantage (Lipp and Vaitl 1988). The present study compared this new RT task (RT-new) with a traditional RT task (RT-old) and with a standard aversive US (shock) in differential classic conditioning of ED, heart rate (HR), and digital pulse volume (DPV) responses. Eight-second-delay differential conditioning was applied in three groups of 12 subjects each. Simple geometric features (square, cross) displayed on a television screen served as conditional stimuli (CS+ and CS-). In acquisition, there were no statistically significant differences among the groups; differential conditioning did occur in HR, first- and second-interval ED responses, and first-interval DPV responses. Separate analyses within each group, however, revealed that there was no second-interval ED conditioning in the RT-old group. During extinction, neither DPV nor second-interval ED conditioning could be obtained, whereas HR and first-interval ED conditioning occurred in each group. In third-interval omission ED responses, RT-old and shock groups exhibited extinction, while response differentiation was maintained in the RT-new group throughout extinction. The RT task including feedback proved to be as reliable a US as a standard aversive US, whereas application of a traditional RT task again yielded some weaknesses in second-interval ED conditioning.

  • Twenty-three subjects rated the belongingness of pairs of conditionable (photographic slides) and unconditioned (e.g., shock, tone, human scream) stimuli. Forty new subjects were then classically conditioned, using rating-defined high (angry face/scream) and low (landscape/scream) belongingness pairs. Finger-pulse responses to the high-belongingness pairs showed superior acquisition and resistance to extinction. Another 40 subjects were conditioned to compound stimuli: a slide (either landscape or angry face) that was the same over trials, and a yellow or blue background that was the discriminant cue for the unconditioned stimulus (scream). When the angry face (the high-belongingness slide) was the invariant part of the compound, relatively poorer differential pulse-volume and skin-conductance conditioning was observed. Thus, depending on the task, a priori belongingness rendered stimuli selectively conditionable, either enhancing or inhibiting visceral response associations.

  • The present study was conducted to demonstrate classic conditioning in electrodermal (ED) and heart rate (HR) responses by using a nonaversive reaction time (RT) task as unconditional stimulus (US). Three groups of 12 subjects each were studied to test the efficacy of this US procedure by varying the essential components of the RT task-US between groups. Eight seconds differential delay conditioning was applied in each group. Simple geometric features (square, cross) displayed on a TV screen were used as CS+ and CS-. RT task consisted of a nonaversive tone (72 dBA, 1000 or 1200 Hz) and a motor response (pressing a button with the left index finger). Subjects were asked to respond as soon as the tone stimulus was presented. The three groups received different stimulus sequences during the 16-trial acquisition phase only. In one group (Group C1), CS+ was followed by a tone to which subjects were to respond, whereas CS- was not followed by a tone. Similarly, in a second group (Group H), CS+ was followed by a tone, whereas CS- was not; however, subjects of Group H (habituation group) were not required to respond to the tone. In a third group, (Group C2) CS+ was followed by a tone to which subjects were to respond, while CS- was followed by a different tone requiring no response. According to analysis of Group C1 data, differential conditioning was obtained in each response measure. Group H displayed habituation in each response measure obtained. In Group C2, differential conditioning was obtained in the second latency window of ED responses only.(ABSTRACT TRUNCATED AT 250 WORDS)

Last update from database: 04.06.25, 15:35 (UTC)