Ihre Suche
Ergebnisse 11 Einträge
-
Goal: We aimed to identify electroencephalographic (EEG) signal fluctuations within independent components (ICs) that correlate to spontaneous blood oxygenation level dependent (BOLD) activity in regions of the default mode network (DMN) during eyes-closed resting state. Methods: We analyzed simultaneously acquired EEG and functional magnetic resonance imaging (fMRI) eyes-closed resting state data in a convenience sample of 30 participants. IC analysis (ICA) was used to decompose the EEG time-series and common ICs were identified using data-driven IC clustering across subjects. The IC time courses were filtered into seven frequency bands, convolved with a hemeodynamic response function (HRF) and used to model spontaneous fMRI signal fluctuations across the brain. In parallel, group ICA analysis was used to decompose the fMRI signal into ICs from which the DMN was identified. Frequency and IC cluster associated hemeodynamic correlation maps obtained from the regression analysis were spatially correlated with the DMN. To investigate the reliability of our findings, the analyses were repeated with data collected from the same subjects 1 year later. Results: Our results indicate a relationship between power fluctuations in the delta, theta, beta and gamma frequency range and the DMN in different EEG ICs in our sample as shown by small to moderate spatial correlations at the first measurement (0.234 < |r| < 0.346, p < 0.0001). Furthermore, activity within an EEG component commonly identified as eye movements correlates with BOLD activity within regions of the DMN. In addition, we demonstrate that correlations between EEG ICs and the BOLD signal during rest are in part stable across time. Discussion: We show that ICA source separated EEG signals can be used to investigate electrophysiological correlates of the DMN. The relationship between the eye movement component and the DMN points to a behavioral association between DMN activity and the level of eye movement or the presence of neuronal activity in this component. Previous findings of an association between frontal midline theta activity and the DMN were replicated.
-
BACKGROUND: Cocaine use disorders (CUDs) have been associated with increased risk-taking behavior. Neuroimaging studies have suggested that altered activity in reward and decision-making circuitry may underlie cocaine user's heightened risk-taking. It remains unclear if this behavior is driven by greater reward salience, lack of appreciation of danger, or another deficit in risk-related processing. METHODS: Twenty-nine CUD participants and forty healthy comparison participants completed the Risky Gains Task during a functional magnetic resonance imaging scan. During the Risky Gains Task, participants choose between a safe option for a small, guaranteed monetary reward and risky options with larger rewards but also the chance to lose money. Frequency of risky choice overall and following a win versus a loss were compared. Neural activity during the decision and outcome phase were examined using linear mixed effects models. RESULTS: Although the groups did not differ in overall risk-taking frequency, the CUD group chose a risky option more often following a loss. Neuroimaging analyses revealed that the comparison group showed increasing activity in the bilateral ventral striatum as they chose higher-value, risky options, but the CUD group failed to show this increase. During the outcome phase, the CUD group showed a greater decrease in bilateral striatal activity relative to the comparison group when losing the large amount, and this response was correlated with risk-taking frequency after a loss. CONCLUSIONS: The brains of CUD individuals are hypersensitive to losses, leading to increased risk-taking behaviors, and this may help explain why these individuals take drugs despite aversive outcomes.
-
In the general concept of self-disturbances in schizophrenia and schizophrenia spectrum disorders, somatopsychic depersonalization (SPD) occupies a special place as it constitutes a syndrome that comprises feelings of detachment from one's own body and mental processes. However, apart from clinical descriptions, to date the pathophysiology of SPD is not fully understood due to the rareness of the syndrome and a lack of experimental studies. In a case study of one patient with schizotypal disorder, we applied a multimodal approach to understanding the SPD phenomena. The patient's clinical profile was identified as disruption of implicit bodily function, accompanied by depressive symptoms. On a neuropsychological level, the patient exhibited impairment in executive functioning, intact tactile perception and kinesthetic praxis. Behavioral tests revealed an altered sense of time but unimpaired self-agency. Furthermore, the patient exhibited a lack of empathy and he had autistic traits, although with a sufficient ability to verbalize his feelings. On the neurobiological level using an active and passive touch paradigm during functional magnetic resonance imaging (fMRI), we found a hyperconnectivity of the default-mode network and salience network and a hypoconnectivity of the central executive brain networks in the performance of the touch task as well as intact perceptual touch processing emerging from the direct comparisons of the touch conditions. Our data provide evidence for the important role of altered large-brain network functioning in SPD that corresponds to the specific behavioral and neurocognitive phenomena.
-
This study addresses the controversy over how motor maps are organized during action simulation by examining whether action simulation states, that is, motor imagery and action observation, run on either effector-specific and/or action-specific motor maps. Subjects had to observe or imagine three types of movements effected by the right hand or the right foot with different action goals. The functional magnetic resonance imaging results showed an action-specific organization within premotor and posterior parietal areas of both hemispheres during action simulation, especially during action observation. There were also less pronounced effector-specific activation sites during both simulation processes. It is concluded that the premotor and parietal areas contain multiple motor maps rather than a single, continuous map of the body. The forms of simulation (observation, imagery), the task contexts (movements related to an object, with usual/unusual effector), and the underlying reason for performing the simulation (rate your subjective success afterwards) lead to the specific use of different representational motor maps within both regions. In our experimental setting, action-specific maps are dominant especially, during action observation, whereas effector-specific maps are recruited to only a lesser degree.
-
Stress and fear conditioning processes are both important vulnerability factors in the development of psychiatric disorders. In behavioral studies considerable sex differences in fear learning have been observed after increases of the stress hormone cortisol. But neuroimaging experiments, which give insights into the neurobiological correlates of stress × sex interactions in fear conditioning, are lacking so far. In the current functional magnetic resonance imaging (fMRI) study, we tested whether a psychosocial stressor (Trier Social Stress Test) compared to a control condition influenced subsequent fear conditioning in 48 men and 48 women taking oral contraceptives (OCs). One of two pictures of a geometrical figure was always paired (conditioned stimulus, CS+) or never paired (CS-) with an electrical stimulation (unconditioned stimulus). BOLD responses as well as skin conductance responses were assessed. Sex-independently, stress enhanced the CS+/CS- differentiation in the hippocampus in early acquisition but attenuated conditioned responses in the medial frontal cortex in late acquisition. In early acquisition, stress reduced the CS+/CS- differentiation in the nucleus accumbens in men, but enhanced it in OC women. In late acquisition, the same pattern (reduction in men, enhancement in OC women) was found in the amygdala as well as in the anterior cingulate. Thus, psychosocial stress impaired the neuronal correlates of fear learning and expression in men, but facilitated them in OC women. A sex-specific modulation of fear conditioning after stress might contribute to the divergent prevalence of men and women in developing psychiatric disorders.
-
BACKGROUND: Current models suggest that a variation in the promoter region of the serotonin transporter gene (5-HTTLPR) is associated with altered amygdala reactivity not only towards negative but also towards positive stimuli, which has been neglected in the past. This association may possibly convey an elevated vulnerability for psychopathology like abuse, craving, and relapses. Since appetitive conditioning is a crucial mechanism in the pathogenesis of these psychiatric disorders, the identification of specific factors contributing to interindividual variation is important. METHODS: In the present study (N = 86), an appetitive conditioning paradigm was conducted, in which a neutral stimulus (CS+) was associated with appetitive stimuli, while a second stimulus (CS-) predicted their absence. Subjects were genotyped according to the 5-HTTLPR genotype. RESULTS: As the main result, we report a significant association between the 5-HTTLPR genotype and hemodynamic responses. Individuals with the s-allele displayed elevated conditioned bilateral amygdala activity in contrast to l/l-allele carriers. Further, increased hemodynamic responses in s-allele carriers were also found in the extended emotional network including the orbitofrontal cortex, the thalamus, and the ventral striatum. CONCLUSION: The present findings indicate an association of the 5-HTTLPR and altered conditioned responses in appetitive conditioning. Further, the findings contribute to the ongoing debate on 5-HTTLPR dependent hemodynamic response patterns by emphasizing that s-allele carriers are not exclusively biased towards fearful, but also towards positive stimuli. In conclusion, our results imply that s-allele carriers might be better described as hyper-reactive towards salient stimuli, which may convey vulnerability for the development of psychiatric disorders.
-
BACKGROUND: Patients with obsessive-compulsive disorder (OCD) have highly idiosyncratic triggers. To fully understand which role this idiosyncrasy plays in the neurobiological mechanisms behind OCD, it is necessary to elucidate the impact of individualization regarding the applied investigation methods. This functional magnetic resonance imaging (fMRI) study explores the neural correlates of contamination/washing-related OCD with a highly individualized symptom provocation paradigm. Additionally, it is the first study to directly compare individualized and standardized symptom provocation. METHODS: Nineteen patients with washing compulsions created individual OCD hierarchies, which later served as instructions to photograph their own individualized stimulus sets. The patients and 19 case-by-case matched healthy controls participated in a symptom provocation fMRI experiment with individualized and standardized stimulus sets created for each patient. RESULTS: OCD patients compared to healthy controls displayed stronger activation in the basal ganglia (nucleus accumbens, nucleus caudatus, pallidum) for individualized symptom provocation. Using standardized symptom provocation, this group comparison led to stronger activation in the nucleus caudatus. The direct comparison of between-group effects for both symptom provocation approaches revealed stronger activation of the orbitofronto-striatal network for individualized symptom provocation. CONCLUSIONS: The present study provides insight into the differential impact of individualized and standardized symptom provocation on the orbitofronto-striatal network of OCD washers. Behavioral and neural responses imply a higher symptom-specificity of individualized symptom provocation.
-
Converging lines of research suggest that exaggerated disgust responses play a crucial role in the development and maintenance of certain anxiety disorders. One strategy that might effectively alter disgust responses is counterconditioning. In this study, we used functional magnetic resonance imaging (fMRI) to examine if the neuronal bases of disgust responses are altered through a counterconditioning procedure. One disgust picture (conditioned stimulus: CS+disg) announced a monetary reward, while a second disgust picture (CS-disg) was never paired with the reward. Two neutral control pictures (CS+con/CS-con) were conditioned in the same manner. Analyses of evaluative conditioning showed that both CS+ were rated significantly more positive after conditioning as compared to the corresponding CS-. Thereby, the CS+disg and the CS+con received an equal increase in valence ratings. Regarding the fMRI data, ANOVA results showed main effects of the conditioning procedure (i.e., CS+ vs. CS-) in the dorsal anterior cingulate cortex. Further, main effects of the picture category (disgust vs. control) were found in the bilateral insula and the orbitofrontal cortex. No interaction effects were detected. In conclusion, the results imply that learning and anticipation of reward was not significantly influenced by the disgust content of the CS pictures. This suggests that the affect induced by the disgust pictures and the affect created by the anticipation of reward may not influence the processing of each other.
-
An object moving towards an observer is subjectively perceived as longer in duration than the same object that is static or moving away. This "time dilation effect" has been shown for a number of stimuli that differ from standard events along different feature dimensions (e.g. color, size, and dynamics). We performed an event-related functional magnetic resonance imaging (fMRI) study, while subjects viewed a stream of five visual events, all of which were static and of identical duration except the fourth one, which was a deviant target consisting of either a looming or a receding disc. The duration of the target was systematically varied and participants judged whether the target was shorter or longer than all other events. A time dilation effect was observed only for looming targets. Relative to the static standards, the looming as well as the receding targets induced increased activation of the anterior insula and anterior cingulate cortices (the "core control network"). The decisive contrast between looming and receding targets representing the time dilation effect showed strong asymmetric activation and, specifically, activation of cortical midline structures (the "default network"). These results provide the first evidence that the illusion of temporal dilation is due to activation of areas that are important for cognitive control and subjective awareness. The involvement of midline structures in the temporal dilation illusion is interpreted as evidence that time perception is related to self-referential processing.
-
Audio-visual binding – as subset of crossmodal integration – describes the combination of information across both these senses to the subjective unified perception of a bound object. We investigated audio-visual binding by using the ventriloquism-effect (localization of a sound is biased towards and by a simultaneous visual stimulus) to act as an indicator for perceived binding. Simple visual and auditory stimuli were presented synchronously or asynchronously. fMRI was recorded during task performance (n=19 subjects) in order to reveal activation in areas discussed to be involved in multisensory processing in the literature. Contrasting trials with reported ventriloquism-effect versus the no-binding condition revealed activation in the insula, superior temporal sulcus and parieto-occipital sulcus. Implementing the ventriloquism-effect allows us to relate these activations to consciousness-related processes, which probably are different from stimulus-driven multisensory integration in subcortical areas.
-
The aim of this fMRI study was to explore brain structures that are involved in the processing of erotic and disgust-inducing pictures. The stimuli were chosen to trigger approach and withdrawal tendencies, respectively. By adding sadomasochistic (SM) scenes to the design and examining 12 subjects with and 12 subjects without sadomasochistic preferences, we introduced a picture category that induced erotic pleasure in one sample and disgust in the other sample. Since we also presented neutral pictures, all subjects viewed pictures of four different categories: neutral, disgust-inducing, erotic, and SM erotic pictures. The analysis indicated that several brain structures are commonly involved in the processing of disgust-inducing and erotic pictures (occipital cortex, hippocampus, thalamus, and the amygdala). The ventral striatum was specifically activated when subjects saw highly sexually arousing pictures. This indicates the involvement of the human reward system during the processing of visual erotica.
Erkunden
Eintragsart
- Zeitschriftenartikel (11)
Sprache
- Englisch (9)
Thema
- fMRI
- 5-HTTLPR (1)
- action mapping (1)
- action observation (1)
- Adult (4)
- Alleles (1)
- alpha-Amylases/metabolism (1)
- Amygdala (1)
- amygdala (1)
- Amygdala/physiology (1)
- Anterior cingulate (1)
- Appetitive Behavior/*physiology (1)
- basal ganglia (1)
- Binding (1)
- Brain Mapping (2)
- *Brain Mapping (1)
- Brain/physiology (1)
- Brain/physiopathology (1)
- Cerebral Cortex/physiology (1)
- *Cerebrovascular Circulation (1)
- cingulate cortex (1)
- classical conditioning (2)
- Cocaine dependence (1)
- Conditioning, Classical/*physiology (1)
- Conditioning, Operant/physiology (1)
- Consciousness-related (1)
- contamination (1)
- Corpus Striatum/physiology (1)
- Cortisol (1)
- counterconditioning (1)
- Crossmodal (1)
- default mode network (1)
- Depersonalization/*complications (1)
- disembodiment (1)
- disgust (1)
- Disgust (1)
- duration (1)
- *Echo-Planar Imaging (1)
- EEG (1)
- EEG independent component clustering (1)
- Electromyography (1)
- Emotion (1)
- Erotica (1)
- error signal (1)
- evaluative conditioning (1)
- Fear learning (1)
- Fear/*physiology/*psychology (1)
- Female (3)
- Foot/physiology (1)
- Frontal Lobe/*physiology (1)
- Frontal Lobe/physiology (1)
- Functional Laterality (1)
- Galvanic Skin Response (1)
- Galvanic Skin Response/physiology (1)
- Genotype (1)
- Goals (1)
- Gyrus Cinguli/physiology (1)
- Hand/physiology (1)
- Hemodynamics (1)
- Humans (4)
- Hydrocortisone/metabolism (1)
- Imagination/*physiology (1)
- imaging genetics (1)
- *INDEL Mutation (1)
- independent component analysis (1)
- individualization (1)
- insular cortex (1)
- Magnetic Resonance Imaging (2)
- Male (4)
- Motor Activity/*physiology (1)
- motor imagery (1)
- motor simulation (1)
- Multisensory (1)
- neurocognition (1)
- neuroimaging (1)
- Neuropsychological Tests (2)
- Nucleus accumbens (1)
- OCD (1)
- Oral contraceptives (1)
- orbitofronto-striatal network (1)
- Parietal Lobe/*physiology (1)
- Photic Stimulation (1)
- Pleasure (1)
- positive emotion (1)
- Psychomotor Performance/*physiology (1)
- reward (1)
- reward learning (1)
- Reward system (1)
- Saliva/metabolism (1)
- schizotypal disorder (1)
- Schizotypal Personality Disorder/*complications/physiopathology (1)
- self (1)
- Serotonin Plasma Membrane Transport Proteins/genetics/*physiology (1)
- Sex behavior (1)
- *Sex Characteristics (1)
- Sex differences (1)
- Sexual Behavior/*physiology (1)
- Somatoform Disorders/complications (1)
- somatopsychic depersonalization (1)
- somatotopic mapping (1)
- Stress hormones (1)
- Stress, Psychological/*physiopathology/*psychology (1)
- striatum (1)
- symptom provocation (1)
- temporal illusion (1)
- Thalamus/physiology (1)
- time perception (2)
- touch (1)
- TSST (1)
- Ventral striatum (1)
- vision (1)
- Visual Perception/*physiology (1)
- washers (1)
- Young Adult (1)