Ihre Suche

Ergebnisse 20 Einträge

  • One of the great challenges in psychiatry is finding reliable biomarkers that may allow for more accurate diagnosis and treatment of patients. Neural variability received increasing attention in recent years as a potential biomarker. In the present explorative study we investigated temporal variability in visually evoked EEG activity in a cohort of 16 adult participants with Asperger Syndrome (AS) and 19 neurotypical (NT) controls. Participants performed a visual oddball task using fine and coarse checkerboard stimuli. We investigated various measures of neural variability and found effects on multiple time scales. (1) As opposed to the previous studies, we found reduced inter-trial variability in the AS group compared to NT. (2) This effect builds up over the entire course of a 5-min experiment and (3) seems to be based on smaller variability of neural background activity in AS compared to NTs. The here reported variability effects come with considerably large effect sizes, making them promising candidates for potentially reliable biomarkers in psychiatric diagnostics. The observed pattern of universality across different time scales and stimulation conditions indicates trait-like effects. Further research with a new and larger set of participants are thus needed to verify or falsify our findings.

  • The information available through our senses is noisy, incomplete, and ambiguous. Our perceptual systems have to resolve this ambiguity to construct stable and reliable percepts. Previous EEG studies found large amplitude differences in two event-related potential (ERP) components 200 and 400 ms after stimulus onset when comparing ambiguous with disambiguated visual information ("ERP Ambiguity Effects"). These effects so far generalized across classical ambiguous figures from different visual categories at lower (geometry, motion) and intermediate (Gestalt perception) levels. The present study aimed to examine whether these ERP Effects are restricted to ambiguous figures or whether they also occur for different degrees of visibility. Smiley faces with low and high visibility of emotional expressions, as well as abstract figures with low and high visibility of a target curvature were presented. We thus compared ambiguity effects in geometric cube stimuli with visibility in emotional faces, and with visibility in abstract figures. ERP Effects were replicated for the geometric stimuli and very similar ERP Effects were found for stimuli with emotional face expressions but also for abstract figures. Conclusively, the ERP amplitude effects generalize across fundamentally different stimulus categories and show highly similar effects for different degrees of stimulus ambiguity and stimulus visibility. We postulate the existence of a high-level/meta-perceptual evaluation instance, beyond sensory details, that estimates the certainty of a perceptual decision. The ERP Effects may reflect differences in evaluation results.

  • The Necker-Zeno model of bistable perception provides a formal relation between the average duration of meta-stable percepts (dwell times T) of ambiguous figures and two other basic time scales (t(0), ΔT) underlying cognitive processing. The model predicts that dwell times T covary with t(0), ΔT or both. We tested this prediction by exploiting that observers, in particular experienced meditators, can volitionally control dwell times T. Meditators and non-meditators observed bistable Necker cubes either passively or tried to hold their current percept. The latencies of a centro-parietal event-related potential (CPP) were recorded as a physiological correlate of t(0). Dwell times T and the CPP latencies, correlated with t(0), differed between conditions and observer groups, while ΔT remained constant in the range predicted by the model. The covariation of CPP latencies and dwell times, as well as their quadratic functional dependence extends previous psychophysical confirmation of the Necker-Zeno model to psychophysiological measures.

  • Environmental information available to our senses is incomplete and to varying degrees ambiguous. It has to be disambiguated in order to construct stable and reliable percepts. Ambiguous figures are artificial examples where perception is maximally unstable and alternates between possible interpretations. Tiny low-level changes can disambiguate an ambiguous figure and thus stabilize percepts. The present study compares ERPs evoked by ambiguous stimuli and disambiguated stimulus variants across three visual categories: geometry (Necker cube), motion (stroboscopic alternative motion stimulus, SAM) and semantics (Boring's old/young woman). We found that (a) disambiguated stimulus variants cause stable percepts and evoke two huge positive ERP excursions (Cohen's effect sizes 1-2), (b) the amplitudes of these ERP effects are inversely related to the degree of stimulus ambiguity, and (c) this pattern of results is consistent across all three tested visual categories. This generality across visual categories points to mechanisms at a very abstract (cognitive) level of processing. We discuss our results in the context of a high-level Bayesian inference unit that evaluates the reliability of perceptual processing results, given a priori incomplete, ambiguous sensory information. The ERP components may reflect the outcome of this reliability estimation.

  • The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation.

  • Intuitively, being aware of one's inner processes to move should be crucial for the control of voluntary movements. However, research findings suggest that we are not always aware of the processes leading to movement execution. The present study investigated induced first-person access to inner processes of movement initiation and the underlying brain activities which contribute to the emergence of voluntary movement. Moreover, we investigated differences in task performance between mindfulness meditators and non-meditators while assuming that meditators are more experienced in attending to their inner processes. Two Libet-type tasks were performed; one in which participants were asked to press a button at a moment of their own decision, and the other one in which participants' attention was directed towards their inner processes of decision making regarding the intended movement which lead them to press the button. Meditators revealed a consistent readiness potential (RP) between the two tasks with correlations between the subjective intention time to act and the slope of the early RP. However, non-meditators did not show this consistency. Instead, elicited introspection of inner processes of movement initiation changed early brain activity that is related to voluntary movement processes. Our findings suggest that compared to non-meditators, meditators are more able to access the emergence of negative deflections of slow cortical potentials (SCPs), which could have fundamental effects on initiating a voluntary movement with awareness.

  • BACKGROUND: Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. METHODS: In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. RESULTS: We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. DISCUSSION: The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.

  • Ambiguous figures attract observers because perception alternates between different interpretations while the sensory information stays unchanged. Understanding the underlying processes is difficult because the precise time instant of this endogenous reversal event needs to be known but is difficult to measure. Presenting ambiguous figures discontinuously and using stimulus onset as estimation of the reversal event increased temporal resolution and provided a series of well-confirmed EEG signatures. In the current EEG study we used this 'onset paradigm' for the first time with Boring's old/young woman stimulus. We found an early occipital event-related potential (ERP) correlate of reversals between the perception of the old woman and the perception of the young woman that fits well with previous ERP findings. This component was not followed by the often-reported occipito-parietal Reversal Negativity at 260 ms, but instead by an occipito-temporal N170, that is typically reported with face stimuli. We interpret our results as follows: ambiguity conflicts take place during processing of stimulus elements in early visual areas roughly 130 ms after stimulus onset. The disambiguation of these elements and their assembly to object 'gestalts' result from an interplay between early visual and object-specific brain areas in a temporal window between 130 and 260 ms after stimulus onset. In the particular case of Boring's old/young woman the processes of element disambiguation and gestalt construction are already finished at 170 ms and, thus, 90 ms earlier than in the case of ambiguous geometric figures (eg Necker cube or Schroeder staircase) or of binocular rivalrous gratings.

  • PURPOSE: We sought brain activity that predicts visual consciousness. METHODS: We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. RESULTS: We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. CONCLUSION: We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness.

  • During observation of an ambiguous Necker cube, our percept changes spontaneously although the external stimulus does not. An EEG paradigm allowing time-resolved EEG measurement during endogenous perceptual reversals recently revealed a chain of ERP correlates beginning with an early occipital positivity at around 130 ms (Reversal Positivity, "RP"). In order to better understand the functional role of this RP, we investigated its relation to the P100, which is spatiotemporally close, typically occurring 100 ms after onset of a visual stimulus at occipital electrodes. We compared the relation of the ERP amplitudes to varying sizes of ambiguous Necker cubes. The main results are: (1) The P100 amplitude increases monotonically with stimulus size but is independent of the participants' percept. (2) The RP, in contrast, is percept-related and largely unaffected by stimulus size. (3) A similar pattern to RP was found for reaction times: They depend on the percept but not on stimulus size. We speculate that the P100 reflects processing of elementary visual features, while the RP is related to a processing conflict during 3D interpretation that precedes a reversal. The present results indicate that low-level visual processing (related to stimulus size) and (relative) high-level processing (related to perceptual reversal) occur in close spatial and temporal vicinity.

  • Recent research suggests that our sense of time intervals in the range of seconds is directly related to activity in the insular cortex, which contains the primary sensory area for interoception. We therefore investigated whether performance in a duration reproduction task might correlate with individual interoceptive awareness and with measurable changes in autonomic activity during the task. Thirty-one healthy volunteers participated in an interoceptive (heartbeat) perception task and in repeated temporal reproduction trials using intervals of 8, 14, and 20s duration while skin conductance levels and cardiac and respiratory periods were recorded. We observed progressive increases in cardiac periods and decreases in skin conductance level during the encoding and (less reliably) the reproduction of these intervals. Notably, individuals' duration reproduction accuracy correlated positively both with the slope of cardiac slowing during the encoding intervals and with individual heartbeat perception scores. These results support the view that autonomic function and interoceptive awareness underpin our perception of time intervals in the range of seconds.

  • Although our eyes receive incomplete and ambiguous information, our perceptual system is usually able to successfully construct a stable representation of the world. In the case of ambiguous figures, however, perception is unstable, spontaneously alternating between equally possible outcomes. The present study compared EEG responses to ambiguous figures and their unambiguous variants. We found that slight figural changes, which turn ambiguous figures into unambiguous ones, lead to a dramatic difference in an ERP ("event-related potential") component at around 400 ms. This result was obtained across two different categories of figures, namely the geometric Necker cube stimulus and the semantic Old/Young Woman face stimulus. Our results fit well into the Bayesian inference concept, which models the evaluation of a perceptual interpretation's reliability for subsequent action planning. This process seems to be unconscious and the late EEG signature may be a correlate of the outcome.

  • If we observe an ambiguous figure, our percept is unstable and alternates between the possible interpretations. Periodically interrupting the presentation sizably modulates the spontaneous reversal rate. We here studied event-related potential (ERP) correlates of the neural processes underlying these strong modulations. An ambiguous Necker stimulus was presented discontinuously with four randomly varying interstimulus intervals (ISI; 14, 43, 130, 390 ms) while participants indicated perceptual reversals. EEG was selectively averaged with respect to the participants' percept and ISI. ERP traces varied markedly between ISIs. A simple model explained a major part of this variation and showed that the ISI-dependent ERP modulation occurs after disambiguation has already taken place. We suggest that perceptual stability (or reversal) depends on a system state, slowly changing from one reversal to the next. ISI can shift this state on a scale between stability and instability.

  • The observation of an ambiguous figure leads to spontaneous perceptual reversals while the observed picture stays unchanged. Some ERP studies on ambiguous figures report a P300-like component correlated with perceptual reversals supporting a top-down explanation, while other studies found early visual ERP components supporting a bottom-up explanation. Based on an experimental paradigm that permits a high temporal resolution of the endogenous reversal event, we compared endogenous Necker-cube reversals with exogenously-induced reversals of unambiguous cube variants. For both reversal types, we found a chain of ERP components with the following characteristics: (1) An early occipital ERP component (130 ms) is restricted to endogenous reversals. (2) All subsequent components also appear with exogenously-induced reversals, however 40-90 ms earlier than their endogenous counterparts. (3) The latency difference between reversal types is also reflected in the timing of manual reactions, which occur 100-130 ms after P300-like components. The results suggest that the P300-like component is the same as found in other ERP studies on ambiguous figures. This component does not reflect the reversal per se, but rather its cognitive analysis, 300 ms after a change of the representation in early visual areas. The presented ERP chains integrate the different ERP results and allow to pinpoint the steps where top-down mechanisms begin to exert their influence.

  • How can our percept spontaneously change while the observed object stays unchanged? This happens with ambiguous figures, like the Necker cube. Explanations favor either bottom-up factors in early visual processing, or top-down factors near awareness. The EEG has a high temporal resolution, so event related potentials (ERPs) may help to throw light on these alternative explanations. However, the precise point in time of neural correlates of perceptual reversal is difficult to estimate. We developed a paradigm that overcomes this problem and found an early (120 ms) occipital ERP signal correlated with endogenous perceptual reversal. Parallels of ambiguous-figure-reversal to binocular-rivalry-reversals are explored.

  • The article reviews the current knowledge regarding altered states of consciousness (ASC) (a) occurring spontaneously, (b) evoked by physical and physiological stimulation, (c) induced by psychological means, and (d) caused by diseases. The emphasis is laid on psychological and neurobiological approaches. The phenomenological analysis of the multiple ASC resulted in 4 dimensions by which they can be characterized: activation, awareness span, self-awareness, and sensory dynamics. The neurophysiological approach revealed that the different states of consciousness are mainly brought about by a compromised brain structure, transient changes in brain dynamics (disconnectivity), and neurochemical and metabolic processes. Besides these severe alterations, environmental stimuli, mental practices, and techniques of self-control can also temporarily alter brain functioning and conscious experience.

  • Many headache patients believe that weather changes act as pain triggers. Therefore, the present study investigated the psychophysiological influence of an indicator of atmospheric instability, Very Low Frequency (VLF)-sferics, on 32 subjectively weather-sensitive women suffering from migraine attacks and/or tension-type headaches. It was analyzed if sferics exposure is able to induce electrocortical changes as well as headache symptoms. The subjects, who had been divided into two groups, participated in a sferics simulation study. The experimental group (n = 16) underwent a ten-minute exposure to 10kHz-sferics impulses followed by 20 minutes without treatment in order to examine possible prolonged sferics effects. The control group (n = 16) received no treatment. As dependent measures, EEG spectral power was compared between the two groups at six electrode sites (F3/F4; P3/P4; O1/O2). Sferics exposure provoked increases in absolute alpha and beta power during the treatment. The alpha power enhancement was still present at parietal sites at the end of registration (20 minutes after the end of exposure). The stimulation did not induce headache symptoms.

  • A previously recorded electromagnetic impulse of natural origin, a 10 kHz-sferic, was simulated and presented to 20 subjects. The magnetic component of the signal with a maximum field amplitude of 50 nT and a duration of 500 microseconds was applied over a duration of 10 minutes with a pulse repetition rate that varied statistically between 7 and 20 Hz. After sferics exposure, an additional 20 minutes without treatment were recorded in order to examine possible prolonged effects of sferics stimulation. The control group (n = 20) received no treatment. As a dependent measure, electrocortical changes throughout the course of the experiment were determined by means of EEG spectral analysis and compared between the two groups. Sferics exposure provoked increases in alpha and beta power. The effect was present during stimulation and continued for 10 minutes after the end of treatment. A longer lasting influence of sferics exposure was displayed by subjects with a high degree in weather sensitivity, somatic complaints, and neuroticism, who continued to stay on an enhanced alpha power level until the end of registration (20 minutes after the end of exposure). With these results a general electrocortical sensitivity towards sferics as well as individual differences in sferics reactivity could be demonstrated.

  • The present study was carried out to determine the inhibitory cortical processes induced by changes in hemodynamics. Previous experiments in humans conducted in our laboratory have shown that there is a close relationship between posture and delta and theta EEG activity. The most pronounced effects were obtained during the 6 degrees head-down tilt (HDT) position. In space medicine the HDT procedure is very frequently employed to simulate micro-gravity and to determine the neurohormonal counter-regulations evoked by the expansion of central volume. Twenty male subjects spent 23 h in bed in 6 degrees HDT and 23 h in 6 degrees HUT (head-up tilt) positions during which EEG (frontal, central, parietal, occipital), startle responses, and reaction-times were measured every 2 h (from 10:00 h till 20:00 h). The effects of cardiovascular deconditioning (CD) regularly occurring after HDT were assessed by examining orthostatic tolerance and the physical work capacity (bicycle ergometry). As expected, 23 h HDT led to more pronounced CD than HUT. Spectral power analyses of EEG revealed increases in delta and theta frequency hands similar to those found during HDT in previous EEG studies. In addition, subjects responded more slowly (S1-S2 reaction-time task) during HDT as compared with HUT bedrest. The influence of HDT on startle response, however, was not in keeping with the initial hypothesis (i.e. dampening of reflex activity). The EEG data and the sensorimotor performance indicated that the body fluid shift towards the thoracic cavity induced by HDT resulted in signs of cortical inhibition. In addition to neural mechanisms, other processes must be postulated which are closely related to the counter-regulation evoked by the varying body positions.

Last update from database: 04.06.25, 15:35 (UTC)

Erkunden

Team

Sprache

Thema